Phenotypic heterogeneity is a hallmark of aggressive cancer behaviour and a clinical challenge. Despite much characterisation of this heterogeneity at a multi-omics level in many cancers, we have a limited understanding of how this heterogeneity emerges spontaneously in an isogenic cell population. Some longitudinal observations of dynamics in epithelial-mesenchymal heterogeneity, a canonical example of phenotypic heterogeneity, have offered us opportunities to quantify the rates of phenotypic switching that may drive such heterogeneity. Here, we offer a mathematical modeling framework that explains the salient features of population dynamics noted in PMC42-LA cells: (a) predominance of EpCAM subpopulation, (b) re-establishment of parental distributions from the EpCAM and EpCAM subpopulations, and (c) enhanced heterogeneity in clonal populations established from individual cells. Our framework proposes that fluctuations or noise in content duplication and partitioning of SNAIL-an EMT-inducing transcription factor-during cell division can explain spontaneous phenotypic switching and consequent dynamic heterogeneity in PMC42-LA cells observed experimentally at both single-cell and bulk level analysis. Together, we propose that asymmetric cell division can be a potential mechanism for phenotypic heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945776 | PMC |
http://dx.doi.org/10.3390/biom12030348 | DOI Listing |
J Virol
January 2025
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
46,XY differences/disorders of sex development (DSD) are genetically heterogeneous conditions characterized by atypical development of the reproductive system. MYRF, a gene encoding a transcription factor, has been identified as a potential causative gene for DSD and cardiac urogenital syndrome (CUGS). This study aims to delineate the clinical manifestations of patients with 46,XY DSD and MYRF mutations, encompassing both from our cohort and cases reported in the literature.
View Article and Find Full Text PDFProbl Endokrinol (Mosk)
January 2024
Background: Osteoporosis is a common age-related disease with disabling consequences, the early diagnosis of which is difficult due to its long and hidden course, which often leads to diagnosis only after a fracture. In this regard, great expectations are placed on advanced developments in machine learning technologies aimed at predicting osteoporosis at an early stage of development, including the use of large data sets containing information on genetic and clinical predictors of the disease. Nevertheless, the inclusion of DNA markers in prediction models is fraught with a number of difficulties due to the complex polygenic and heterogeneous nature of the disease.
View Article and Find Full Text PDFAlterations of the extracellular matrix (ECM), including both mechanical (such as stiffening of the ECM) and chemical (such as variation of adhesion proteins and deposition of hyaluronic acid (HA)) changes, in malignant tissues have been shown to mediate tumor progression. To survey how cells from different tissue types respond to various changes in ECM mechanics and composition, we measured physical characteristics (adherent area, shape, cell stiffness, and cell speed) of 25 cancer and 5 non-tumorigenic cell lines on 7 different substrate conditions. Our results indicate substantial heterogeneity in how cell mechanics changes within and across tissue types in response to mechanosensitive and chemosensitive changes in ECM.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.
Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!