Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth.

Biomolecules

Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France.

Published: February 2022

Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth , and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945201PMC
http://dx.doi.org/10.3390/biom12030341DOI Listing

Publication Analysis

Top Keywords

pheromone receptor
12
pheromone receptors
12
antennal lobe
12
pheromone
10
sex pheromone
8
macroglomeruli antennal
8
receptor knock-out
4
knock-out pheromone
4
pheromone detection
4
detection brain
4

Similar Publications

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.

View Article and Find Full Text PDF

is a species whose sclerotia have been extensively employed in traditional Chinese medicine, which has diuretic, antitumor, anticancer, and immune system enhancement properties. However, prolonged asexual reproduction has resulted in significant homogenization and degeneration of seed sclerotia. In contrast, sexual reproduction has emerged as an effective strategy to address these challenges, with a distinct mating system serving as the foundation for the implementation of sexual breeding.

View Article and Find Full Text PDF

Background: Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study.

View Article and Find Full Text PDF

As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!