The ATP-Binding Cassette transporter A1 (ABCA1) reverse cholesterol transport channel has been associated with a number of phenotypes in breast cancer, including reduced proliferation and increased metastatic capacity. It is induced in an epithelial-mesenchymal transition (EMT), but little is known about how this occurs, and whether it is sufficient to promote metastatic phenotypes. To address these questions, we have deciphered the transcriptional regulation of ABCA1 across EMT states and found that it is repressed by MYC via an E-box element in its P1 alternative promoter. De-repression of the promoter by MYC knockdown leads to induction of ABCA1 expression. This indicates that ABCA1 expression is regulated in an EMT, revealing another link between ABCA1 and malignant phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945546PMC
http://dx.doi.org/10.3390/biomedicines10030581DOI Listing

Publication Analysis

Top Keywords

abca1 expression
12
breast cancer
8
abca1
6
expression upregulated
4
emt
4
upregulated emt
4
emt breast
4
cancer cell
4
cell lines
4
lines myc-mediated
4

Similar Publications

C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.

View Article and Find Full Text PDF

Construction of the bromodomain-containing protein-associated prognostic model in triple-negative breast cancer.

Cancer Cell Int

January 2025

Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fuiian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.

Background: Bromodomain-containing protein (BRD) play a pivotal role in the development and progression of malignant tumours. This study aims to identify prognostic genes linked to BRD-related genes (BRDRGs) in patients with triple-negative breast cancer (TNBC) and to construct a novel prognostic model.

Methods: Data from TCGA-TNBC, GSE135565, and GSE161529 were retrieved from public databases.

View Article and Find Full Text PDF

Background: Thyroid cancer is one of the most common endocrine tumors worldwide, especially among women and the metastatic mechanism of papillary thyroid carcinoma remains poorly understood.

Methods: Thyroid cancer tissue samples were obtained for single-cell RNA-sequencing and spatial transcriptomics, aiming to intratumoral and antimetastatic heterogeneity of advanced PTC. The functions of APOE in PTC cell proliferation and invasion were confirmed through in vivo and in vitro assays.

View Article and Find Full Text PDF

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!