A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters. | LitMetric

In this work, a new colorimetric sensor based on mesoporous silica nanosphere-modified color-sensitive materials was established for application in monitoring the total volatile basic nitrogen (TVB-N) of oysters. Firstly, mesoporous silica nanospheres (MSNs) were synthesized based on the improved Stober method, then the color-sensitive materials were doped with MSNs. The "before image" and the "after image" of the colorimetric senor array, which was composed of nanocolorimetric-sensitive materials by a charge-coupled device (CCD) camera were then collected. The different values of the before and after image were analyzed by principal component analysis (PCA). Moreover, the error back-propagation artificial neural network (BP-ANN) was used to quantitatively predict the TVB-N values of the oysters. The correlation coefficient of the colorimetric sensor array after being doped with MSNs was greatly improved; the Rc and Rp of BP-ANN were 0.9971 and 0.9628, respectively when the principal components (PCs) were 10. Finally, a paired sample -test was used to verify the accuracy and applicability of the BP-ANN model. The result shows that the colorimetric-sensitive materials doped with MSNs could improve the sensitivity of the colorimetric sensor array, and this research provides a fast and accurate method to detect the TVB-N values in oysters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947737PMC
http://dx.doi.org/10.3390/foods11060817DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
12
color-sensitive materials
12
colorimetric sensor
12
doped msns
12
application monitoring
8
tvb-n oysters
8
materials doped
8
tvb-n values
8
values oysters
8
sensor array
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!