AI Article Synopsis

  • Agar is a polysaccharide derived from red seaweeds that is valued for its uses in the food, cosmetic, and medical industries, but its extraction process is energy-intensive.
  • Researchers optimized both conventional and ultrasound-assisted extraction methods, achieving better efficiency and higher agar yields while reducing processing time.
  • Characterization of the extracts indicated similarities to commercial agar; however, they exhibited lower gel strength, suggesting they could have unique and innovative applications.

Article Abstract

Agar is a hydrocolloid found in red seaweeds, which has been of industrial interest over the last century due to its multiple applications in the food, cosmetic, and medical fields. This polysaccharide, extracted by boiling for several hours, is released from the cell wall of red seaweeds. However, the environmental impact coming from the long processing time and the energy required to reach the targeted processing temperature needs to be reduced. In this study, a response surface methodology was employed to optimize both conventional extraction and ultrasound-assisted extractions. Two different models were successfully obtained (R = 0.8773 and R = 0.7436, respectively). Additionally, a further re-extraction confirmed that more agar could be extracted. Protein was also successfully co-extracted in the seaweed residues. Optimized conditions were obtained for both the extractions and the re-extraction of the two methods (CE: 6 h, 100 °C; and UAE: 1 h, 100% power). Finally, FT-IR characterization demonstrated that the extracts had a similar spectrum to the commercial agar. Compared to commercial samples, the low gel strength of the agar extracts shows that these extracts might have novel and different potential applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947469PMC
http://dx.doi.org/10.3390/foods11060805DOI Listing

Publication Analysis

Top Keywords

red seaweeds
8
agar
5
comparison study
4
study optimized
4
optimized ultrasound-based
4
ultrasound-based method
4
method versus
4
versus optimized
4
optimized conventional
4
conventional method
4

Similar Publications

Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.

View Article and Find Full Text PDF

Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review.

Int J Biol Macromol

January 2025

The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China. Electronic address:

Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Investigation of solid-state fermentation of red seaweed (Pyropia spp.) with lactic acid Bacteria: Effects on protein profile and in vitro digestibility.

Food Chem

December 2024

Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand. Electronic address:

This study aimed to investigate the effects of solid-state fermentation (SSF) on the protein profile and digestibility of red seaweed (Pyropia spp.). The results indicated that compound lactic acid bacteria (LAB) performed better than a single strain in terms of growth and metabolism on the red seaweed substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!