It is necessary to know the manufacturer and model of a previously implanted shoulder prosthesis before performing Total Shoulder Arthroplasty operations, which may need to be performed repeatedly in accordance with the need for repair or replacement. In cases where the patient’s previous records cannot be found, where the records are not clear, or the surgery was conducted abroad, the specialist should identify the implant manufacturer and model during preoperative X-ray controls. In this study, an auxiliary expert system is proposed for classifying manufacturers of shoulder implants on the basis of X-ray images that is automated, objective, and based on hybrid machine learning models. In the proposed system, ten different hybrid models consisting of a combination of deep learning and machine learning algorithms were created and statistically tested. According to the experimental results, an accuracy of 95.07% was achieved using the DenseNet201 + Logistic Regression model, one of the proposed hybrid machine learning models (p < 0.05). The proposed hybrid machine learning algorithms achieve the goal of low cost and high performance compared to other studies in the literature. The results lead the authors to believe that the proposed system could be used in hospitals as an automatic and objective system for assisting orthopedists in the rapid and effective determination of shoulder implant types before performing revision surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952500 | PMC |
http://dx.doi.org/10.3390/healthcare10030580 | DOI Listing |
J Chem Inf Model
January 2025
Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.
Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (A.A., L.S.D., E.K.O., R.K.).
Background: While universal screening for Lp(a; lipoprotein[a]) is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a; ARISE), a validated machine learning tool, to health system electronic health records to increase the yield of Lp(a) testing.
View Article and Find Full Text PDFJ Hand Surg Eur Vol
January 2025
Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.
This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
Stat Methods Med Res
January 2025
School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China.
One primary goal of precision medicine is to estimate the individualized treatment rules that optimize patients' health outcomes based on individual characteristics. Health studies with multiple treatments are commonly seen in practice. However, most existing individualized treatment rule estimation methods were developed for the studies with binary treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!