The objective of this study was to investigate the presence and persistence of carbapenemase-producing spp. isolated from wastewater and treated wastewater from two tertiary hospitals in Mexico. We conducted a descriptive cross-sectional study in two hospital wastewater treatment plants, which were sampled in February 2020. We obtained 30 spp. isolates. Bacterial identification was carried out by the Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS) and antimicrobial susceptibility profiles were performed using the VITEK2 automated system. The presence of carbapenem resistance genes (CRGs) in spp. isolates was confirmed by PCR. Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). High rates of spp. resistance to cephalosporins and carbapenems (80%) were observed in isolates from treated wastewater from both hospitals. The molecular screening by PCR showed the presence of and genes. The PFGE pattern separated the isolates into 19 patterns (A-R) with three subtypes (C1, D1, and I1). Microbiological surveillance and identification of resistance genes of clinically important pathogens in hospital wastewater can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944648 | PMC |
http://dx.doi.org/10.3390/antibiotics11030288 | DOI Listing |
East Mediterr Health J
December 2024
Department of Basic Sciences, Faculty of Civil Engineering, University of Aleppo, Aleppo, Syria.
Background: Hospital wastewater poses a significant threat to human health due to the presence of difficult-to-degrade organic compounds, active pharmaceutical ingredients and multiple inorganic substances that can pollute water resources and ecosystems.
Aim: To compare the effectiveness of different techniques for removing organic load from hospital laboratory wastewater in Aleppo, Syria.
Methods: We treated wastewater samples from hospital laboratories at Aleppo University Hospital, Syria, using several techniques, including biological treatment with the rotating biological contactor, adsorption with Syrian natural clay, coagulation with aluminium sulphate, advanced oxidation with ultrasound, and a combined treatment using natural clay and ultrasound.
ACS Nano
January 2025
College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.
View Article and Find Full Text PDFChem Biodivers
January 2025
University of Manouba Higher Institute of Biotechnology of Sidi Thabet, Laboratory of Physiopathology, Food and Biomolecules, BiotechPolet, BP-66, 2020, Sidi Thabet,, 2020, Ariana, TUNISIA.
Olive mill wastewater (OMWW), a byproduct of olive oil extraction, constitutes a natural resource of phenolic compounds. Hydroxytyrosol (HT), the predominant compound, exhibits antioxidant, anti-inflammatory, and neuroprotective effects. This research aims to evaluate the effect of OMWW bioproduct rich in HT on retinal glial function, glutamate metabolism and synaptic transmission alterations mediated by hyperglycemia and dyslipidemia in high-calorie diet (HCD) induced diabetic retinopathy (DR) in Psammomys obesus.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Imeta
December 2024
Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China.
The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!