AI Article Synopsis

  • Optimal tumor identification during surgery for gastrointestinal stromal tumors (GISTs) is crucial, and this study explores the use of near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) to enhance that process.
  • The study involved 10 GIST patients who received ICG intravenously before surgery, with fluorescence assessments made at various intervals.
  • Results showed that GISTs often had fluorescence levels similar to surrounding tissues, indicating that ICG is currently not effective for distinguishing GISTs during surgery, highlighting the need for more specific fluorescent tracers for better tumor identification.

Article Abstract

Background: Optimal intraoperative tumor identification of gastrointestinal stromal tumors (GISTs) is important for the quality of surgical resections. This study aims to assess the potential of near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) to improve intraoperative tumor identification.

Methods: Ten GIST patients, planned to undergo resection, were included. During surgery, 10 mg of ICG was intravenously administered, and NIRF imaging was performed at 5, 10, and 15 min after the injection. The tumor fluorescence intensity was visually assessed, and tumor-to-background ratios (TBRs) were calculated for exophytic lesions.

Results: Eleven GIST lesions were imaged. The fluorescence intensity of the tumor was visually synchronous and similar to the background in five lesions. In one lesion, the tumor fluorescence was more intense than in the surrounding tissue. Almost no fluorescence was observed in both the tumor and healthy peritoneal tissue in two patients with GIST lesions adjacent to the liver. In three GISTs without exophytic growth, no fluorescence of the tumor was observed. The median TBRs at 5, 10, and 15 min were 1.0 (0.4-1.2), 1.0 (0.5-1.9), and 0.9 (0.7-1.2), respectively.

Conclusion: GISTs typically show similar fluorescence intensity to the surrounding tissue in NIRF imaging after intraoperative ICG administration. Therefore, intraoperatively administered ICG is currently not applicable for adequate tumor identification, and further research should focus on the development of tumor-specific fluorescent tracers for GISTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946640PMC
http://dx.doi.org/10.3390/cancers14061572DOI Listing

Publication Analysis

Top Keywords

nirf imaging
12
fluorescence intensity
12
fluorescence
8
near-infrared fluorescence
8
imaging indocyanine
8
indocyanine green
8
identification gastrointestinal
8
gastrointestinal stromal
8
stromal tumors
8
tumors gists
8

Similar Publications

Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging.

Nat Commun

January 2025

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.

View Article and Find Full Text PDF

A mitochondria-targeted NIR fluorescence/photoacoustic dual-modality probe for highly sensitive and selective imaging of HClO in vivo.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China. Electronic address:

Article Synopsis
  • Hypochlorous acid (HClO) is a reactive oxygen species produced in mitochondria, and its high levels are associated with various diseases, making its detection crucial in medicine.
  • A new dual-modality probe called MB-ClO has been developed, which uses near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques to accurately and sensitively detect HClO in biological systems.
  • MB-ClO shows low toxicity and good water solubility, has a fast response time, and has been successfully tested in a mouse model of rheumatoid arthritis, highlighting its potential for biomedical applications.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy, but there is limited improvement in its treatment. Near-infrared fluorescence (NIRF) imaging could potentially address the clinical challenges of PDAC. Indocyanine green (ICG) has been widely used in clinical practice; however, its short half-life and lack of active targeting greatly limit its application in pancreatic surgery.

View Article and Find Full Text PDF

Cutting-edge insights: near-infrared imaging for surgical margin assessment in head and neck tumor resection: a systematic review and meta-analysis.

Quant Imaging Med Surg

December 2024

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background: In head and neck cancer (HNC), real-time evaluation of tumor margin status following surgical excision of the tumor is of critical importance. This systematic review aimed to assess the effectiveness of near-infrared fluorescence (NIRF) imaging for the real-time delineation of tumor margins in HNC resections.

Methods: Two investigators independently conducted a comprehensive search following the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines across the PubMed, Scopus, Embase, and China National Knowledge Infrastructure (CNKI) databases until August 1, 2023.

View Article and Find Full Text PDF

Sentinel lymph node biopsy holds significant importance in cancer management, yet the challenge persists in early detection and precise resection of metastasis lymph nodes (LNs) due to the absence of specific and sensitive optical probes. This study reports metastatic LN reporters (MLRs) with an activatable optical output for accurate spatiotemporal mapping of lymphatic metastases in gastric cancer. MLRs are self-assembled entities incorporating mixed amphiphiles with a lipophilic tail and a tumor-targeting ligand or a fluorescent moiety that is caged with a switch cleavable by tumor-specific β-galactosidase (β-Gal).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!