Neurotoxicity caused by traditional chemotherapy and radiotherapy is well known and widely described. New therapies, such as biologic therapy and immunotherapy, are associated with better outcomes in pediatric patients but are also associated with central and peripheral nervous system side effects. Nevertheless, central nervous system (CNS) toxicity is a significant source of morbidity in the treatment of cancer patients. Some CNS complications appear during treatment while others present months or even years later. Radiation, traditional cytotoxic chemotherapy, and novel biologic and targeted therapies have all been recognized to cause CNS side effects; additionally, the risks of neurotoxicity can increase with combination therapy. Symptoms and complications can be varied such as edema, seizures, fatigue, psychiatric disorders, and venous thromboembolism, all of which can seriously influence the quality of life. Neurologic complications were seen in 33% of children with non-CNS solid malign tumors. The effects on the CNS are disabling and often permanent with limited treatments, thus it is important that clinicians recognize the effects of cancer therapy on the CNS. Knowledge of these conditions can help the practitioner be more vigilant for signs and symptoms of potential neurological complications during the management of pediatric cancers. As early detection and more effective anticancer therapies extend the survival of cancer patients, treatment-related CNS toxicity becomes increasingly vital. This review highlights major neurotoxicities due to pediatric cancer treatments and new therapeutic strategies; CNS primary tumors, the most frequent solid tumors in childhood, are excluded because of their intrinsic neurological morbidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946171PMC
http://dx.doi.org/10.3390/cancers14061540DOI Listing

Publication Analysis

Top Keywords

nervous system
12
pediatric cancer
8
central nervous
8
side effects
8
cns toxicity
8
cancer patients
8
cns
7
cancer
5
short long-term
4
long-term toxicity
4

Similar Publications

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia.

Ophthalmol Ther

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.

Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.

View Article and Find Full Text PDF

Gastrointestinal lesions of eosinophilic granulomatosis with polyangiitis: a prediction model and clinical patterns.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.

Objective: Severe gastrointestinal lesions are associated with a poor prognosis in eosinophilic granulomatosis with polyangiitis (EGPA). The goal of this study was to develop an effective predictive model for gastrointestinal lesions and to examine clinical patterns, associated factors, treatment, and outcomes of gastrointestinal lesions in EGPA.

Methods: We retrospectively enrolled 165 EGPA patients.

View Article and Find Full Text PDF

Habituation of the biological response to repeated psychosocial stress: a systematic review and meta-analysis.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:

Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!