Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as abnormal development and function of most organ systems. Adults with congenital heart disease have high rates of acquired heart failure, and usually die from a cardiac cause. Here we explore primary cilia's role in acquired heart disease. Intraflagellar Transport 88 knockout results in reduced primary cilia, and knockout from cardiac endothelium produces myxomatous degeneration similar to mitral valve prolapse seen in adult humans. Induced primary cilia inactivation by other mechanisms also produces excess myocardial hypertrophy and altered scar architecture after ischemic injury, as well as hypertension due to a lack of vascular endothelial nitric oxide synthase activation and the resultant left ventricular dysfunction. Finally, primary cilia have cell-to-cell transmission capacity which, when blocked, leads to progressive left ventricular hypertrophy and heart failure, though this mechanism has not been fully established. Further research is still needed to understand primary cilia's role in adult cardiac pathology, especially heart failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946116 | PMC |
http://dx.doi.org/10.3390/cells11060960 | DOI Listing |
Pediatr Pulmonol
January 2025
Department of Pediatrics and Adolescent Medicine, Danish PCD Centre, Danish Pediatric Pulmonary Service, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
J Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.
View Article and Find Full Text PDFCell Struct Funct
January 2025
College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!