Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector.

Antioxidants (Basel)

Pharmacy Department, "Federico II" University, Via D. Montesano, 49, 80131 Naples, Italy.

Published: March 2022

Nanoscience applications in the food and cosmetic industry offer many potential benefits for consumers and society. Nanotechnologies permit the manipulation of matter at the nanoscale level, resulting in new properties and characteristics useful in food and cosmetic production, processing, packaging, and storage. Nanotechnology protects sensitive bioactive compounds, improves their bioavailability and water solubility, guarantees their release at a site of action, avoids contact with other constituents, and masks unpleasant taste. Biopolymeric nanoparticles, nanofibers, nanoemulsions, nanocapsules, and colloids are delivery systems used to produce food supplements and cosmetics. There are no barriers to nanoscience applications in food supplements and cosmetic industries, although the toxicity of nano-sized delivery systems is not clear. The physicochemical and toxicological characterization of nanoscale delivery systems used by the nutricosmeceutic industry is reviewed in this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944742PMC
http://dx.doi.org/10.3390/antiox11030563DOI Listing

Publication Analysis

Top Keywords

delivery systems
12
nanoscience applications
8
applications food
8
food cosmetic
8
food supplements
8
contribution nanoscience
4
nanoscience antioxidants
4
delivery
4
antioxidants delivery
4
delivery nutricosmetic
4

Similar Publications

Background: The recent global pandemic posed extraordinary challenges for healthcare systems. Frontline healthcare workers required focused, immediate, practical, evidence-based instruction on optimal patient care modalities as knowledge evolved around disease management.

Objective: This course was designed to provide knowledge to protect healthcare workers; combat disease spread; and improve patient outcomes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!