A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of Combined Heat and Salt Stresses on Tomato Plants-Insights into Nutrient Uptake and Redox Homeostasis. | LitMetric

Impact of Combined Heat and Salt Stresses on Tomato Plants-Insights into Nutrient Uptake and Redox Homeostasis.

Antioxidants (Basel)

GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Published: February 2022

Currently, salinity and heat are two critical threats to crop production and food security which are being aggravated by the global climatic instability. In this scenario, it is imperative to understand plant responses to simultaneous exposure to different stressors and the cross-talk between underlying functional mechanisms. Thus, in this study, the physiological and biochemical responses of tomato plants ( L.) to the combination of salinity (100 mM NaCl) and heat (42 °C; 4 h/day) stress were evaluated. After 21 days of co-exposure, the accumulation of Na in plant tissues was superior when salt-treated plants were also exposed to high temperatures compared to the individual saline treatment, leading to the depletion of other nutrients and a harsher negative effect on plant growth. Despite that, neither oxidative damage nor a major accumulation of reactive oxygen species took place under stress conditions, mostly due to the accumulation of antioxidant (AOX) metabolites alongside the activation of several AOX enzymes. Nonetheless, the plausible allocation of resources towards the defense pathways related to oxidative and osmotic stress, along with severe Na toxicity, heavily compromised the ability of plants to grow properly when the combination of salinity and heat was imposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944476PMC
http://dx.doi.org/10.3390/antiox11030478DOI Listing

Publication Analysis

Top Keywords

salinity heat
8
combination salinity
8
impact combined
4
heat
4
combined heat
4
heat salt
4
salt stresses
4
stresses tomato
4
tomato plants-insights
4
plants-insights nutrient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!