Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior-inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs.We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (LSTM andLR) and online schemes (LSTM andLR), the latter to allow for continuous adaptation to recent respiratory patterns.We found theLSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively.This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac60b7DOI Listing

Publication Analysis

Top Keywords

lstm networks
12
respiratory motion
12
mr-guided radiotherapy
8
patients treated
8
testing set
8
lstm andlr
8
achieved rmse
8
lstm
6
offline online
4
online lstm
4

Similar Publications

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.

View Article and Find Full Text PDF

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.

Sensors (Basel)

January 2025

School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China.

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain.

View Article and Find Full Text PDF

A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis.

Sensors (Basel)

January 2025

Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.

Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!