Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane fouling is one of major obstacles in the application of membrane technologies. Accurately predicting or simulating membrane fouling behaviours is of great significance to elucidate the fouling mechanisms and develop effective measures to control fouling. Although mechanistic/mathematical models have been widely used for predicting membrane fouling, they still suffer from low accuracy and poor sensitivity. To overcome the limitations of conventional mathematical models, artificial intelligence (AI)-based techniques have been proposed as powerful approaches to predict membrane filtration performance and fouling behaviour. This work aims to present a state-of-the-art review on the advances in AI algorithms (e.g., artificial neural networks, fuzzy logic, genetic programming, support vector machines and search algorithms) for prediction of membrane fouling. The working principles of different AI techniques and their applications for prediction of membrane fouling in different membrane-based processes are discussed in detail. Furthermore, comparisons of the inputs, outputs, and accuracy of different AI approaches for membrane fouling prediction have been conducted based on the literature database. Future research efforts are further highlighted for AI-based techniques aiming for a more accurate prediction of membrane fouling and the optimization of the operation in membrane-based processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.118299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!