A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. | LitMetric

Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review.

Water Res

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China. Electronic address:

Published: June 2022

Membrane fouling is one of major obstacles in the application of membrane technologies. Accurately predicting or simulating membrane fouling behaviours is of great significance to elucidate the fouling mechanisms and develop effective measures to control fouling. Although mechanistic/mathematical models have been widely used for predicting membrane fouling, they still suffer from low accuracy and poor sensitivity. To overcome the limitations of conventional mathematical models, artificial intelligence (AI)-based techniques have been proposed as powerful approaches to predict membrane filtration performance and fouling behaviour. This work aims to present a state-of-the-art review on the advances in AI algorithms (e.g., artificial neural networks, fuzzy logic, genetic programming, support vector machines and search algorithms) for prediction of membrane fouling. The working principles of different AI techniques and their applications for prediction of membrane fouling in different membrane-based processes are discussed in detail. Furthermore, comparisons of the inputs, outputs, and accuracy of different AI approaches for membrane fouling prediction have been conducted based on the literature database. Future research efforts are further highlighted for AI-based techniques aiming for a more accurate prediction of membrane fouling and the optimization of the operation in membrane-based processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118299DOI Listing

Publication Analysis

Top Keywords

membrane fouling
32
membrane-based processes
12
prediction membrane
12
fouling
11
membrane
10
fouling prediction
8
ai-based techniques
8
prediction
5
artificial intelligence-incorporated
4
intelligence-incorporated membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!