Automatic sensor-to-foot alignment is required in clinical gait analysis using inertial sensors to avoid assumptions about sensors initial positions and orientations. Numerous studies have proposed alignment methods. The current study aimed at describing and accessing the performance of a simple rule to automatically recognize the orientation of the sagittal plane foot angular velocity that can be used with any alignment method and any populations including individuals with severe motor disorders such as patients with cerebral palsy (CP). Fifty-five participants (15 healthy, 15 with CP and 25 with various other motor disorders) wore IMUs on both feet during one or several visits of clinical gait analysis (CGA) with optical motion capture system as reference. The foot coordinate system was determined using acceleration during motionless periods and angular velocity during walking, as previously described in the literature. Based on the foot sagittal plane angular velocity, a novel rule is introduced to determine the latest uncertainty related to mediolateral axis direction which often causes errors. It consisted of massively filtering the signal and applying a simple peak detection, omitting the double peaks with the same sign. The time between the negative and positive peaks can inform on the axis direction. This verification showed excellent results with 99,94% sensibility against the reference. This simple rule could be used to further improve existing sensor-to-segment algorithms with inertial sensors located on the feet, and thus improve pathological gait analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2022.111055DOI Listing

Publication Analysis

Top Keywords

angular velocity
16
gait analysis
16
simple rule
12
sagittal plane
12
rule automatically
8
automatically recognize
8
recognize orientation
8
orientation sagittal
8
plane foot
8
foot angular
8

Similar Publications

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the association and prediction of hip abduction-adduction and knee flexion-extension isokinetic absolute and relative strength and power at 60°/s and 180°/s from functional tests performance (i.e., Up-and-Go Test [seconds], 30-Second Chair Stand Test [repetitions and relative and allometric power], 30-Second Arm Curl Test [repetitions], and 6-Minute Walk Test [meters]) in older adults.

View Article and Find Full Text PDF

To achieve rapid and stable detumbling of a space noncooperative satellite, an adaptive variable admittance control method for the manipulator is proposed and verified through simulation study and the ground experiment. The control block diagram of the proposed method is presented, and the adaptive variable admittance compliant detumbling control model is established. The proposed controller includes the fixed admittance controller in manipulator task space, the adaptive pose compensator for the grasping point on docking ring, and the damping adaptive regulator based on manipulator joint angular velocity, and the stability is proven by the Lyapunov method.

View Article and Find Full Text PDF

Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.

Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!