Development of novel urea-based ATM kinase inhibitors with subnanomolar cellular potency and high kinome selectivity.

Eur J Med Chem

Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, 72076, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076, Tübingen, Germany; Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany. Electronic address:

Published: May 2022

The ATM kinase is a key molecule regulating DNA damage response and can be targeted resulting in efficient radio- or chemosensitization. Due to the enormous size of this protein and the associated difficulties in obtaining high-quality crystal structures, we sought to develop an accurate in silico model to identify new targeting possibilities. We identified a urea group as the most beneficial chemical anchor point, which could undergo multiple interactions in the aspartate-rich hydrophobic region I of the atypical ATM kinase domain. Based on in silico data, we designed and synthesized a comprehensive set of novel urea-based inhibitors and characterized them in diverse biochemical assays. Using this strategy, we identified inhibitors with subnanomolar potency, which were further evaluated in cellular models, selectivity and early DMPK properties. Finally, the two lead compounds 34 and 39 exhibited subnanomolar cellular activity along with an excellent selectivity profile and favorable metabolic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114234DOI Listing

Publication Analysis

Top Keywords

atm kinase
12
novel urea-based
8
inhibitors subnanomolar
8
subnanomolar cellular
8
development novel
4
urea-based atm
4
kinase inhibitors
4
cellular potency
4
potency high
4
high kinome
4

Similar Publications

Importance: Heterogeneity in development of estrogen receptor (ER)-specific first primary breast cancer exists due to deleterious germline variants in moderate- to high-penetrance breast cancer susceptibility genes, but it is unknown if these associations occur in ER-specific CBC.

Objective: To determine the association of deleterious germline variants in breast cancer susceptibility genes with ER-specific CBC development and whether ER status of the first primary breast cancer modifies these associations.

Design, Setting, And Participants: This case-control study included CBC cases and matched unilateral breast cancer controls from The Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study, a population-based case-control study.

View Article and Find Full Text PDF

The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts.

Proc Natl Acad Sci U S A

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases.

View Article and Find Full Text PDF

ATM in immunobiology: From lymphocyte development to cancer immunotherapy.

Transl Oncol

January 2025

Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea. Electronic address:

Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!