Introduction: Discordance between real-world prescribing patterns and global treatment guidelines for the treatment of chronic obstructive pulmonary disease (COPD) with inhaled single or dual long-acting bronchodilator maintenance therapy is increasingly being reported in the literature, particularly with regard to addition of inhaled corticosteroids (ICS). Patient-related factors, e.g. inhalation technique and inspiratory flow, are key to disease control in COPD. Treatment discordance and patient-related factors can lead to high-cost side effects and sub-optimal treatment benefit; furthermore, the COVID-19 pandemic has led to new challenges in COPD management.
Areas Covered: This article summarizes a series of presentations sponsored by Boehringer Ingelheim and delivered at the annual CHEST congress 2021 (October 17-20, 2021) that explored new insights into the optimal management of COPD.
Expert Opinion/commentary: There is a concerning high degree of discordance with GOLD recommendations. Dual therapy without addition of ICS does not increase exacerbation risk and could reduce pneumonia risk, and unnecessary prescription of triple therapy has financial implications. Clinic-based spirometry may not reflect the home setting, and training is required; inhalers that operate independently of users' inhalation profiles should be considered. Integration of digital healthcare solutions into clinical studies is suggested in the post-COVID setting, although further evaluation is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17476348.2022.2056022 | DOI Listing |
Discov Oncol
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400010, China.
Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.
View Article and Find Full Text PDFMed Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2025
Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:
Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine, Nankai University, Tianjin 300071, China.
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!