Uncovering the Mechanism of Size Effect on the Thermomechanical Properties of Highly Cross-Linked Epoxy Resins.

J Phys Chem B

Department of Aerospace Engineering, Tohoku University, 6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

Published: April 2022

AI Article Synopsis

Article Abstract

Epoxy resins are widely used as matrix resins, especially for carbon-fiber-reinforced plastic, due to their outstanding physical and mechanical properties. To date, most research into cross-linking processes using simulation has considered only a distance-based criterion to judge the probability of reaction. In this work, a new algorithm was developed for use with the large-scale atomic/molecular massively parallel simulator (LAMMPS) simulation package to study the cross-linking process; this new approach combines both a distance-based criterion and several kinetic criteria to identify whether the reaction has occurred. Using this simulation framework, we investigated the effect of model size on predicted thermomechanical properties of three different structural systems: diglycidyl ether of bisphenol A (DGEBA)/4,4'-diaminodiphenyl sulfone (4,4'-DDS), DGEBA/diethylenetriamine (DETA), and tetraglycidyl diaminodiphenylmethane (TGDDM)/4,4'-DDS. Derived values of gel point, volume shrinkage, and cross-linked resin density were found to be insensitive to model size in these three systems. Other thermomechanical properties, i.e., glass-transition temperature, Young's modulus, and yield stress, were found to reach stable values for systems larger than ∼40 000 atoms for both DGEBA/4,4'-DDS and DGEBA/DETA. However, these same properties modeled for TGDDM/4,4'-DDS did not stabilize until the system size reached 50 000 atoms. Our results provide general guidelines for simulation system size and procedures to more accurately predict the thermomechanical properties of epoxy resins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c10827DOI Listing

Publication Analysis

Top Keywords

thermomechanical properties
16
epoxy resins
12
distance-based criterion
8
model size
8
system size
8
properties
6
size
5
uncovering mechanism
4
mechanism size
4
thermomechanical
4

Similar Publications

Characterization of Photo-Cross-Linked Polyethylene Pipes for Geothermal Energy Storage.

ACS Omega

January 2025

Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Boras, Sweden.

This study investigates the morphology and thermo-mechanical properties of cross-linked polyethylene (PEX) pipes for potential use in high-temperature borehole thermal energy storage systems. Particular attention is given to a novel type of PEX pipe produced through photoinitiated cross-linking (PEX-e). Two formulations, PEX-e1 and PEX-e2, were analyzed and compared to peroxide-cross-linked polyethylene (PEX-a) and non-cross-linked bimodal polyethylene (PE100) pipes.

View Article and Find Full Text PDF

Ultrafast deconstruction and reconstruction of corn starch via synergistic effect of high-frequency electric field and water motion.

Int J Biol Macromol

January 2025

National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China. Electronic address:

The intricate multi-level microstructure of starch, formed through extensive inter- and intra-molecular hydrogen bonds, significantly influences the processability and performance of starch-based products. Consequently, the ability to effectively manipulate the multi-level microstructure holds substantial implications for the development of biomass products. This study introduces a novel approach utilizing high-frequency electric field (HFE) to produce a transparent and robust starch product.

View Article and Find Full Text PDF

3D printed reservoir-like vaginal rings for antibiotic delivery.

Int J Pharm

January 2025

Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133, Milano, Italy.

Targeting the development of a 3D printed reservoir-like vaginal rings (VRs) intended to fulfill the needs of precision medicine, prototypes ensuring prolonged release of metronidazole (MTZ) were preliminary manufactured and tested. Indeed, this drug represents the first-line therapy against bacterial vaginosis, which would especially benefit from convenient as well as easy dose adjustment and from more than 48 h continuous release, thus avoiding barely tolerated and repeated administrations. Starting from a soft thermoplastic elastomer (TPE), hollow ring structures were successfully printed at 190 °C and then extemporaneously filled with drug-loaded, in-situ-crosslinking hydrogel formulations based on alginate (ALG).

View Article and Find Full Text PDF

Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion.

View Article and Find Full Text PDF

Extension of shelf-life of mangoes using PLA-cardanol-amine functionalized graphene active films.

Int J Biol Macromol

January 2025

Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!