Skin hyperpigmentation is commonly treated by topical drug application. Several naturally occurring compounds exhibit attractive biological effects including anti-melanogenic activity. Chemically modified derivatives of those compounds are expected to be more efficient. However, efficacy and safety testing processes are of significant consideration to identify the most effective compound among them. Herein, we demonstrated a tiered approach to investigate the antipigmentation activity of 17 trans-N-coumaroyltyramine derivatives. First, we evaluated the in chemico antityrosinase activity, then the cytotoxicity of the most potent derivatives using a mitochondrial activity-based assay, followed with the in vitro anti-melanogenic activity in two dimensional (2D) monolayer human melanocytes. The selected derivatives were topically applied on a three dimensional (3D) pigmented-reconstructed human epidermis (pRhE) containing melanocytes and keratinocytes to evaluate their depigmenting activity. Two of the 17 derivatives displayed a significant reduction in pigmentation in the 3D pRhE, comparable to kojic acid, a known tyrosinase inhibitor. In addition, a molecular docking experiment indicated an interaction of the three derivatives and tyrosinase, suggesting that these derivatives have potent anti-melanogenic activity through tyrosinase inhibition. Our findings provide an alternative approach for investigating skin-whitening agents, thereby facilitating the research and development of skin-whitening products that need not be tested on animals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.14569DOI Listing

Publication Analysis

Top Keywords

anti-melanogenic activity
16
tiered approach
8
activity trans-n-coumaroyltyramine
8
derivatives
8
trans-n-coumaroyltyramine derivatives
8
activity
7
approach evaluation
4
anti-melanogenic
4
evaluation anti-melanogenic
4
derivatives skin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!