Background: Using conventional endoscope to perform endoscopic submucosal dissection (ESD) is difficult because of the one-handed operation and blind dissection caused by gravity. Poor visualization of the submucosal plane causes ESD to be associated with a high risk of bleeding and perforation. This study aimed to develop a novel ESD-assistive robot system and to evaluate its efficacy.
Methods: A novel flexible auxiliary single-arm transluminal endoscopic robot (FASTER) was developed. A total of 36 artificial lesions in ex vivo porcine stomachs were removed using the FASTER-assisted ESD method (n = 18) and the conventional ESD method (n = 18). Lesions were 2 cm or 4 cm in diameter, located on the anterior and posterior walls of the antrum. Primary outcome measurements were dissection time and dissection speed.
Results: The dissection time in FASTER-assisted ESD was significantly shorter than that in conventional ESD (7 min vs 13 min, p = 0.012), mainly because of the faster dissection speed (148.6 vs 97.0 mm/min, p = 0.002). The total procedure time in FASTER-assisted ESD was shorter than that in conventional ESD, but the difference was not significant (16 min vs 24 min, p = 0.252). Complete en bloc resection was achieved in all lesions. No perforations were detected. The FASTER exhibited the ability of regrasp, multidirectional traction, and proper tension control during ESD.
Conclusion: FASTER significantly increased the dissection speed by providing proper traction and achieving good submucosal vision. This new device is expected to facilitate ESD in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-022-09194-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!