A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study. | LitMetric

AI Article Synopsis

  • A study explored the effectiveness of organic semi-conducting sensors and trained dogs in detecting SARS-CoV-2 infections in individuals, even those with mild or no symptoms.
  • The results showed that OSC sensors had a very high success rate (98%-100% sensitivity and 99%-100% specificity), while trained dogs also performed well, with sensitivity between 82% and 94%.
  • The combination of dog screening and PCR tests may significantly enhance detection rates, potentially preventing 2.2 times more virus transmission compared to just isolating symptomatic individuals.

Article Abstract

Background: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry.

Methods: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening.

Results: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95-100) to 100% and specificity from 99% (95% CI 97-100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76-87) to 94% (95% CI 89-98) and specificity ranging from 76% (95% CI 70-82) to 92% (95% CI 88-96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only.

Conclusions: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people.Trial Registration NCT04509713 (clinicaltrials.gov).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047163PMC
http://dx.doi.org/10.1093/jtm/taac043DOI Listing

Publication Analysis

Top Keywords

trained dogs
16
asymptomatic mild
12
osc sensors
12
uninfected individuals
12
odour samples
12
organic semi-conducting
8
sars-cov-2 infections
8
sars-cov-2 infection
8
sensors trained
8
dogs distinguish
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!