Cutting a path to effective delivery of genome engineering machinery.

Cardiovasc Res

Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.

Published: May 2022

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvac034DOI Listing

Publication Analysis

Top Keywords

cutting path
4
path effective
4
effective delivery
4
delivery genome
4
genome engineering
4
engineering machinery
4
cutting
1
effective
1
delivery
1
genome
1

Similar Publications

[Geostatics in impacted mandibular third molar surgury].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.

Exploring the application of minimally invasive techniques in the extraction of impacted mandibular third molar (IMTM), to achieve the treatment goal of "less trauma, short time, fast recovery", remains the focus of dentists. For now, the IMTM are mostly extracted in pieces after removing the crown and root resistance by bone removal and tooth segmentation, using 45°reverse-angle high speed turbine, piezosurgery, chisel or other dynamic system. However, There is a lack of principle-level parsing in different provinces and primary hospitals, while experience is still the main factor in avoiding excessive bone removal in complex IMTM extraction, as well as optimizing the specific position and angle of the parting teeth, finding the fulcrum and designing the best dislocation path when there is root resistance.

View Article and Find Full Text PDF

In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.

View Article and Find Full Text PDF

An in-depth review of AI-powered advancements in cancer drug discovery.

Biochim Biophys Acta Mol Basis Dis

January 2025

AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan. Electronic address:

The convergence of artificial intelligence (AI) and genomics is redefining cancer drug discovery by facilitating the development of personalized and effective therapies. This review examines the transformative role of AI technologies, including deep learning and advanced data analytics, in accelerating key stages of the drug discovery process: target identification, drug design, clinical trial optimization, and drug response prediction. Cutting-edge tools such as DrugnomeAI and PandaOmics have made substantial contributions to therapeutic target identification, while AI's predictive capabilities are driving personalized treatment strategies.

View Article and Find Full Text PDF

With the increasing availability of high-quality genome assemblies, pangenome graphs emerged as a new paradigm in the genomics field for identifying, encoding, and presenting genomic variation at both population and species levels. However, it remains challenging to truly dissect and interpret pangenome graphs via biologically informative visualization. To facilitate better exploration and understanding of pangenome graphs towards novel biological insights, here we present a web-based interactive Visualization and interpretation framework for linear-Reference-projected Pangenome Graphs (VRPG).

View Article and Find Full Text PDF

Comparison of mechanical properties and shaping performance of ProGlider and ProTaper ultimate slider.

BMC Oral Health

January 2025

Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.

Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.

Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!