Chemical species tomography (CST) has been widely used for in situ imaging of critical parameters, e.g., species concentration and temperature, in reactive flows. However, even with state-of-the-art computational algorithms, the method is limited due to the inherently ill-posed and rank-deficient tomographic data inversion and by high computational cost. These issues hinder its application for real-time flow diagnosis. To address them, we present here a novel convolutional neural network, namely CSTNet, for high-fidelity, rapid, and simultaneous imaging of species concentration and temperature using CST. CSTNet introduces a shared feature extractor that incorporates the CST measurements and sensor layout into the learning network. In addition, a dual-branch decoder with internal crosstalk, which automatically learns the naturally correlated distributions of species concentration and temperature, is proposed for image reconstructions. The proposed CSTNet is validated both with simulated datasets and with measured data from real flames in experiments using an industry-oriented sensor. Superior performance is found relative to previous approaches in terms of reconstruction accuracy and robustness to measurement noise. This is the first time, to the best of our knowledge, that a deep learning-based method for CST has been experimentally validated for simultaneous imaging of multiple critical parameters in reactive flows using a low-complexity optical sensor with a severely limited number of laser beams.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3157689DOI Listing

Publication Analysis

Top Keywords

reactive flows
12
species concentration
12
concentration temperature
12
convolutional neural
8
neural network
8
chemical species
8
species tomography
8
critical parameters
8
simultaneous imaging
8
species
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!