Objective: Existing methods for muscle atrophy evaluation based on muscle size measures from ultrasound images are inadequate in precision. Radiomics has been widely used in various medical studies, but its validity for the evaluation of muscle atrophy has not been fully explored.
Methods: This study presents a radiomics analysis for muscle atrophy evaluation using ultrasound images. The hindlimb unloading rat model was developed to simulate weightlessness muscle atrophy and ultrasound images of the hind limbs were acquired for both the hindlimb unloaded (HU) and control groups during a 21-day HU period. A total of 368 radiomics features were extracted and the stable and informative features were selected through a two-stage feature selection procedure. The feature change trajectory of the stable features was analyzed using the hierarchical clustering method. Finally, an adaptive longitudinal feature selection and grading network, ALNet, was developed to evaluate muscle atrophy.
Results: The clustering trajectories of ultrasound image features showed similar trends to the changes in muscle atrophy at the molecular level. The best grading accuracy achieved by the ALNet was 79.5% for the Soleus (Sol) muscle and 82.6% for the Gastrocnemius (Gas) muscle.
Conclusion: The test-retest is essential in performing radiomics analysis on ultrasound images. The longitudinal feature selection is important for muscle atrophy grading. The ultrasound image features of the Gas muscle have better discrimination ability than that of the Sol muscle. This study proves for the first time the capability of ultrasound image features for muscle atrophy evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2022.3162223 | DOI Listing |
PLoS One
January 2025
Faculty of Biology, School of Health Sciences, Medicine & Health, University of Manchester, Manchester, United Kingdom.
Background: Despite the comparatively high prevalence of possible sarcopenia among young-old adults in the community, there is currently no available and effective social media-based intervention to increase the awareness and change the behavior of the target population to prevent sarcopenia. Using co-design methodology, we developed a multicomponent intervention strategy of health education and exercise for sarcopenia prevention utilizing the TikTok platform.
Objectives: The primary purpose of this study is to examine the feasibility and acceptability of the social media-based intervention to enhance muscle function in community-dwelling young-old adults with possible sarcopenia.
Cell Rep
January 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Electronic address:
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFAging Clin Exp Res
January 2025
The College of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Many studies have developed or validated predictive models to estimate the risk of sarcopenia in dialysis patients, but the quality of model development and the applicability of the models remain unclear.
Objective: To systematically review and critically evaluate currently available predictive models for sarcopenia in dialysis patients.
Methods: We systematically searched five databases until March 2024.
Eur J Nutr
January 2025
School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237, Athens, Greece.
Purpose: Protein supplementation has been proposed as an effective dietary strategy for maintaining or increasing skeletal muscle mass and improving physical performance in middle-aged and older adults. Diabetes mellitus exacerbates muscle mass loss, leading to many older adults with type 2 diabetes mellitus (T2DM) experiencing sarcopenia, and vice versa. Our objective was to assess the impact of increased dietary protein intake on muscle mass, strength, physical performance, and the progression of T2DM in middle-aged and older adults diagnosed with this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!