Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field.

Science

Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

Published: March 2022

Electromechanical (EM) coupling-the conversion of energy between electric and mechanical forms-in ferroelectrics has been used for a broad range of applications. Ferroelectric polymers have weak EM coupling that severely limits their usefulness for applications. We introduced a small amount of fluorinated alkyne (FA) monomers (<2 mol %) in relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) terpolymer that markedly enhances the polarization change with strong EM coupling while suppressing other polarization changes that do not contribute to it. Under a low-dc bias field of 40 megavolts per meter, the relaxor tetrapolymer has an EM coupling factor () of 88% and a piezoelectric coefficient () >1000 picometers per volt. These values make this solution-processed polymer competitive with ceramic oxide piezoelectrics, with the potential for use in distinct applications.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abn0936DOI Listing

Publication Analysis

Top Keywords

relaxor ferroelectric
4
ferroelectric polymer
4
polymer exhibits
4
exhibits ultrahigh
4
ultrahigh electromechanical
4
electromechanical coupling
4
coupling low
4
low electric
4
electric field
4
field electromechanical
4

Similar Publications

Ultrahigh Energy Storage Performance in BiFeO-Based Lead-Free Ceramics via Tuning Structural Homogeneity and Domain Engineering Strategies.

ACS Appl Mater Interfaces

January 2025

Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.

Lead-free ceramic-based dielectric capacitors are critical in electronics and environmental safety. Nevertheless, developing ideal lead-free ceramics with excellent energy storage properties remains a challenging task for practical applications. Herein, the enhanced relaxation behavior and increased breakdown electric field are utilized to realize the high energy storage behavior of (0.

View Article and Find Full Text PDF

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

ACS Nano

January 2025

Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.

View Article and Find Full Text PDF

Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.

View Article and Find Full Text PDF

Synergistic Enhancement of Energy Storage Performance in NaNbO-Based Lead-Free Relaxor Ferroelectrics via Weakly Coupled Relaxation Behavior.

Small

December 2024

Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

Advancements in pulsed electronic power systems depend significantly on high-performance dielectric energy storage ceramics. Lead-free NaNbO-based energy-storage ceramics are important materials for next-generation pulsed power capacitors owing to their large polarization and bandgaps. However, the high energy loss caused by the antiferroelectric-ferroelectric phase transition leads to low recoverable energy storage density and efficiency, which hinders its practical application.

View Article and Find Full Text PDF

High-performance dielectric capacitors featuring large recoverable energy storage density () and high discharge efficiency (η) are beneficial to realize the device miniaturization, lightweight property, and sustainability of advanced pulse power systems. The obtainment of a high electric breakdown strength () is crucial for improving the energy storage performance of dielectric materials. However, as for BiNaTiO (BNT) lead-free relaxor ferroelectric ceramics, the relatively lower directly limits their electrical performance improvement and practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!