Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081985PMC
http://dx.doi.org/10.1126/science.abn0532DOI Listing

Publication Analysis

Top Keywords

action potential
12
potential initiation
8
control dopamine
8
dopamine release
8
action potentials
8
dopamine axons
8
dopamine
7
action
5
initiation mechanism
4
mechanism distal
4

Similar Publications

The integration of artificial intelligence (AI) into healthcare represents a paradigm shift with the potential to enhance patient care and streamline clinical operations. This commentary explores the Canadian perspective on key organizational considerations for nurse executives, emphasizing the critical role they play in fostering the establishment of AI governance structures and advancing the front-line adoption of AI in nursing practice. The discussion delves into five domains of consideration, analyzing recent developments and implications for nursing executives.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

An evaluation of mepolizumab as an add-on maintenance treatment for severe eosinophilic asthma.

Expert Opin Biol Ther

January 2025

State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.

Introduction: Clinical experience with anti-interleukin (IL)-5 biologic therapies for severe asthma has been increasing, alongside deeper and broader research focusing on the role of IL-5 and the IL-5 targeted mepolizumab. This review aims to provide an update of the evidence on the role of IL-5 and mepolizumab, with discussions of the benefits of mepolizumab and its future potential, to promote the comprehension of the pathophysiology and therapeutic approaches to asthma.

Areas Covered: For this narrative review, we conducted a database search in PubMed and Embase using the keywords 'IL-5' and 'mepolizumab,' focusing on randomized controlled trials and real-world studies up to September 2024.

View Article and Find Full Text PDF

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!