Mesoporous graphitic carbon nitride (mpg-CN) is introduced as a heterogeneous photocatalyst to perform dual photoredox- and nickel-catalyzed cross-coupling reactions between alkyl bis(catecholato)silicates as radical precursors and aryl or alkenyl bromides. The synergy between this recyclable photocatalyst and the broadly applied homogeneous nickel complex [Ni(dtbbpy)Br] gives access to C(sp)-C(sp) cross-coupling products in a sustainable fashion. The recycled mpg-CN photocatalyst was analyzed by time-resolved emission spectroscopy and EPR spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c00529DOI Listing

Publication Analysis

Top Keywords

mesoporous graphitic
8
graphitic carbon
8
carbon nitride
8
alkyl biscatecholatosilicates
8
nitride heterogeneous
4
heterogeneous organic
4
photocatalyst
4
organic photocatalyst
4
photocatalyst dual
4
dual catalytic
4

Similar Publications

3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging.

View Article and Find Full Text PDF

Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors.

Nanomaterials (Basel)

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.

View Article and Find Full Text PDF

Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.

J Colloid Interface Sci

April 2025

Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:

High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.

View Article and Find Full Text PDF

Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil.

Biosensors (Basel)

December 2024

Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey.

Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system.

View Article and Find Full Text PDF

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!