Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With growing concerns about global warming, it has become urgent and critical to capture carbon from various emission sources (such as power plants) and even directly from air. Recent advances in materials research permit the design of various efficient approaches for capturing CO with high selectivity over other gases. Here, we show that crown nanopores (resembling crown ethers) embedded in graphene can efficaciously allow CO to pass and block other flue gas components (such as N and O). We carried out extensive density functional theory-based calculations as well as classical and molecular dynamics simulations to reveal the energetics and dynamics of gas transport through crown nanopores. Our results highlight that the designed crown nanopores in graphene possess not only an excellent selectivity for CO separation/capture but also fast transport (flow) rates, which are ideal for the treatment of flue gas in power plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c00213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!