Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools. The aim of this study was to develop a reliable method for growing individual colonies from AOA cultures on solid medium. Three phylogenetically distinct AOA strains were tested: 'Candidatus Nitrosocosmicus franklandus C13', Nitrososphaera viennensis EN76 and 'Candidatus Nitrosotalea sinensis Nd2'. Of the gelling agents tested, agar and Bacto-agar severely inhibited growth of all three strains. In contrast, both 'Ca. N. franklandus C13' and N. viennensis EN76 tolerated Phytagel™ while the acidophilic 'Ca. N. sinensis Nd2' was completely inhibited. Based on these observations, we developed a Liquid-Solid (LS) method that involves immobilising cells in Phytagel™ and overlaying with liquid medium. This approach resulted in the development of visible distinct colonies from 'Ca. N. franklandus C13' and N. viennensis EN76 cultures and lays the groundwork for the genetic manipulation of this group of microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072212 | PMC |
http://dx.doi.org/10.1093/femsle/fnac029 | DOI Listing |
Membranes (Basel)
January 2025
Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy.
The management of biological sludge from wastewater treatment plants (WWTPs) poses a significant environmental challenge due to increasing sludge production and the presence of emerging pollutants. This study investigates an innovative solution by integrating a thermophilic aerobic membrane reactor (TAMR) into the sludge treatment line of a medium-size WWTP, aiming to minimize biological sludge output while enhancing resource recovery. The study involved a six-month monitoring of an industrial-scale TAMR system, assessing the reduction in volatile solids (VSs) in thickened sludge and evaluating the compatibility of TAMR residues with conventional activated sludge (CAS) systems.
View Article and Find Full Text PDFBiofilm
June 2025
DTU Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.
View Article and Find Full Text PDFActa Biochim Pol
January 2025
Department of Biotechnology, Indonesia International Institute for Life Sciences, East Jakarta, Indonesia.
Erythritol is a beneficial sugar alcohol that can be used as a sugar substitute for diabetic patients. Erythritol is a bioproduct produced by microorganisms as a response to high osmotic pressure and stress in the growth medium. High concentrations of carbon source substrate can increase the osmotic pressure and provide more nutrient supply for yeast growth and metabolism.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
The production of high molecular weight polyethylene particles in aqueous environments has received considerable attention, yet reports on the formation of polyethylene oil within water remain scarce. Herein, we present findings that demonstrate the oligomerization of ethylene by certain iminopyridyl Pd(II) catalysts in water, resulting in the synthesis of hyperbranched ethylene oligomers. It is worth highlighting the intriguing observation that these catalysts exhibited a remarkable catalytic longevity in aqueous medium and ultimately facilitated the generation of a substantial liquid polyolefin phase from water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!