(1) Background: The standard treatment for periodontal disease, a chronic inflammatory state caused by the interaction between biofilms generated by organized oral bacteria and the local host defense response, consists of calculus and biofilm removal through mechanical debridement, associated with antimicrobial therapy that could be delivered either systemically or locally. The present study aimed to determine the effectiveness of a hyaluronic acid membrane matrix as a carrier for the controlled release of the active compounds of a formulation proposed as a topical treatment for periodontal disease, and the influence of pH on the complex system's stability. (2) Methods: The obtained hyaluronic acid (HA) hydrogel membrane with dispersed melatonin (MEL), metronidazole (MZ), and tetracycline (T) was completely characterized through FTIR, XRD, thermal analysis, UV-Vis and fluorescence spectroscopy, fluorescence microscopy, zeta potential and dielectric analysis. The MTT viability test was applied to check the cytotoxicity of the obtained membranes, while the microbiological assessment was performed against strains of spp. and spp. The spectrophotometric investigations allowed to follow up the release profile from the HA matrix for MEL, MZ, and T present in the topical treatment considered. We studied the behavior of the active compounds against the pH of the generated environment, and the release profile of the bioactive formulation based on the specific comportment towards pH variation. The controlled delivery of the bioactive compounds using HA as a supportive matrix was modeled applying Korsmeyer-Peppas, Higuchi, first-order kinetic models, and a newly proposed pseudo-first-order kinetic model. (3) Results: It was observed that MZ and T were released at higher active concentrations than MEL when the pH was increased from 6.75, specific for patients with periodontitis, to a pH of 7.10, characterizing the healthy patients. Additionally, it was shown that for MZ, there is a burst delivery up to 2.40 × 10 mol/L followed by a release decrease, while for MEL and T a short release plateau was recorded up to a concentration of 1.80 × 10 mol/L for MEL and 0.90 × 10 mol/L for T, followed by a continuous release; (4) Conclusions: The results are encouraging for the usage of the HA membrane matrix as releasing vehicle for the active components of the proposed topical treatment at a physiological pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949277 | PMC |
http://dx.doi.org/10.3390/membranes12030303 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
CGH Compagnie Generale des Hopitaux, Rome, Italy.
Introduction: In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect.
Materials And Methods: The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments.
Small
January 2025
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
: Diabetes is a well-recognised factor inducing a plethora of corneal alterations ranging from dry eye to reduced corneal sensibility, epithelial defects, and reduced cicatrisation. This cohort study aimed to assess the efficacy of a novel ophthalmic solution combining cross-linked hyaluronic acid (CHA), chondroitin sulfate (CS), and inositol (INS) in managing diabetes-induced corneal alterations. Specifically, it evaluated the solution's impact on the tear breakup time (TBUT), the ocular surface disease index (OSDI), and corneal sensitivity after three months of treatment.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Rheumatology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
The autoimmune/inflammatory syndrome induced by adjuvants (ASIA) is a rare condition caused by an immune response associated with over-reactivity of the immune system, triggered by adjuvants. The most common adjuvants are aluminium salts but can also be bioimplants or infectious agents. It may lead to the development of various autoimmunologic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!