The information on heart transplantation (HT) in patients with Friedreich's Ataxia (FA) is scarce, and the few published case reports are limited to young patients with mild neurological manifestations. We present the case of a 58-year-old patient with advanced FA (Scale for the Assessment and Rating of Ataxia [SARA] score 30/40), wheelchair-bound for the last 16 years and had urinary incontinence, dysarthria, and neurosensorial deafness. The patient was admitted for a refractory arrhythmic storm and had previous hypertrophic cardiomyopathy that evolved to dilated cardiomyopathy with severely reduced left ventricular ejection fraction and recurrent ventricular arrhythmias. A multidisciplinary team discussed the HT option. The patient was aware of the risks and benefits and considered worthy of the intervention, so he was listed for HT. After a successful surgical intervention, the patient had a long postoperative stay in ICU. He required a high dose of vasopressors, underwent hemofiltration for one month, suffered critical illness myopathy, had several respiratory infections and delayed tracheal extubation. Two and a half months after HT and almost five months at the hospital, the patient was successfully discharged. FA patients with severe heart conditions should be carefully evaluated by a multidisciplinary team to decide the candidacy for HT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952784PMC
http://dx.doi.org/10.3390/jcdd9030080DOI Listing

Publication Analysis

Top Keywords

friedreich's ataxia
8
58-year-old patient
8
multidisciplinary team
8
patient
6
advanced friedreich's
4
ataxia contraindication
4
contraindication heart
4
heart transplantation?
4
transplantation? case
4
case report
4

Similar Publications

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!