Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The environmental presence of anions of natural origin or anthropogenic origin is gradually increasing. As a tool to tackle this problem, carbazole derivatives are an attractive gateway to the development of luminescent chemosensors. Considering the different mechanisms proposed for anion recognition, the fluorescence properties and anion-binding response of several newly synthesised carbazole derivatives were studied. Potential anion sensors were designed so that they combined the native fluorescence of carbazole with the presence of hydrogen bonding donor groups in critical positions for anion recognition. These compounds were synthesised by a feasible and non-expensive procedure using palladium-promoted cyclodehydrogenation of suitable diarylamine under microwave irradiation. In comparison to the other carbazole derivatives studied, 1-hydroxycarbazole proved to be useful as a fluorescent sensor for anions, as it was able to sensitively recognise fluoride and chloride anions by establishing hydrogen bond interactions through the hydrogen atoms on the pyrrolic nitrogen and the hydroxy group. Solvent effects and excited-state proton transfer (ESPT) of the carbazole derivatives are described to discard the role of the anions as Brönsted bases on the observed fluorescence behaviour of the sensors. The anion-sensor interaction was confirmed by H-NMR. Molecular modelling was employed to propose a mode of recognition of the sensor in terms of complex stability and interatomic distances. 1-hydroxycarbazole was employed for the quantitation of fluoride and chloride anions in commercially available medicinal spring water and mouthwash samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946780 | PMC |
http://dx.doi.org/10.3390/bios12030175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!