The lens-free shadow imaging technique (LSIT) is a well-established technique for the characterization of microparticles and biological cells. Due to its simplicity and cost-effectiveness, various low-cost solutions have been developed, such as automatic analysis of complete blood count (CBC), cell viability, 2D cell morphology, 3D cell tomography, etc. The developed auto characterization algorithm so far for this custom-developed LSIT cytometer was based on the handcrafted features of the cell diffraction patterns from the LSIT cytometer, that were determined from our empirical findings on thousands of samples of individual cell types, which limit the system in terms of induction of a new cell type for auto classification or characterization. Further, its performance suffers from poor image (cell diffraction pattern) signatures due to their small signal or background noise. In this work, we address these issues by leveraging the artificial intelligence-powered auto signal enhancing scheme such as denoising autoencoder and adaptive cell characterization technique based on the transfer of learning in deep neural networks. The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types, such as red blood cell (RBC) and white blood cell (WBC). Furthermore, the model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample along with the existing other sample types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946550 | PMC |
http://dx.doi.org/10.3390/bios12030144 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
January 2025
Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.
Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
J Particip Med
January 2025
Division of Allergy & Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, United States.
Background: Adolescents and young adults (AYA) with cystic fibrosis (CF) are at risk for deviating from their daily treatment regimen due to significant time burden, complicated daily therapies, and life stressors. Developing patient-centric, effective, engaging, and practical behavioral interventions is vital to help sustain therapeutically meaningful self-management.
Objective: This study aimed to devise and refine a patient-centered telecoaching intervention to foster self-management in AYA with CF using a combination of intervention development approaches, including an evidence- and theory-based approach (ie, applying existing theories and research evidence for behavior change) and a target population-centered approach (ie, intervention refinement based on the perspectives and actions of those individuals who will use it).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!