To resolve the limited large-scale methods of disposal of low calcium fly ash with poor activity, based on the double excitation principle, clinker and desulfurized gypsum are used as alkali/salt activators to activate fly ash and slag, avoiding the inconvenience of strong alkali activating fly ash in industry. Firstly, the strength test of a filling body with multiple ratio composite cementing material is carried out, and the weight coefficient of each material to strength is analyzed by grey correlation degree. The composition of the hydration products, microstructure, and pore structure of the filling body was analyzed by X-ray diffractometer, scanning electron microscope, thermogravimetric test, and mercury compression test. The strength mechanism of the cemented body was confirmed. The results show that cemented backfill prepared by composite cementitious material, which contained high content and low-quality fly ash, can meet the strength requirements of subsequent backfill in a mine. The degree of composite cementitious material influence on 7 d strength is slag > desulfurized gypsum > fly ash > clinker; the degree of influence on 28 d strength is: fly ash > slag > desulfurized gypsum > clinker. The main hydration products of the composite cementable material with high content low-quality fly ash are C−S−H gel and ettringite, and the unreacted fly ash particles can still be seen at 28 d. As the curing age grows, the difference in the number of hydration products under different proportioning conditions has a weaker effect on the strength, while the influence of raw materials and product morphology on the pore structure determines the development trend of the strength. Therefore, the threshold pore size can be used to characterize the strength advantages and disadvantages reasonably.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950093PMC
http://dx.doi.org/10.3390/gels8030151DOI Listing

Publication Analysis

Top Keywords

fly ash
36
composite cementitious
12
cementitious material
12
low-quality fly
12
desulfurized gypsum
12
hydration products
12
strength
10
fly
9
ash
9
strength mechanism
8

Similar Publications

The resource utilization of municipal solid waste incineration fly ash (MSWI FA) has been widely concerned at present. The chlorine removal from MSWI FA is of great significance for controlling environmental risk and improving materials properties in the process of its resource utilization. This work specifically proposes to divide the chlorine in MSWI FA into inorganic chloride and organic chloride.

View Article and Find Full Text PDF

Outdoor exposure of a heavy metal doped concrete -Measuring and modelling of substance release.

J Environ Manage

January 2025

Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:

Many construction products are in contact with, e.g., rain and seepage water during their service life.

View Article and Find Full Text PDF

To improve the utilization rates of soda residue (SR) and fly ash (FA), reduce environmental pollution, and enhance the mechanical properties of marine clay (MC), this study proposes mixing SR, FA, and MC with cement and /or lime to prepare soda residue-fly ash stabilized soil (SRFSS). Using an orthogonal design for the proportions, the study analyzes the compaction performance, unconfined compressive strength (UCS), and shear strength of SRFSS. The influence of various factors on the mechanical properties of SRFSS was investigated through range and variance analyses.

View Article and Find Full Text PDF

Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash.

Polymers (Basel)

December 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.

Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.

View Article and Find Full Text PDF

As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!