Background: Continuously growing medical knowledge and the increasing amount of data make it difficult for medical professionals to keep track of all new information and to place it in the context of existing information. A variety of digital technologies and artificial intelligence-based methods are currently available as persuasive tools to empower physicians in clinical decision-making and improve health care quality. A novel diagnostic decision support system (DDSS) prototype developed by Ada Health GmbH with a focus on traceability, transparency, and usability will be examined more closely in this study.
Objective: The aim of this study is to test the feasibility and functionality of a novel DDSS prototype, exploring its potential and performance in identifying the underlying cause of acute dyspnea in patients at the University Hospital Basel.
Methods: A prospective, observational feasibility study was conducted at the emergency department (ED) and internal medicine ward of the University Hospital Basel, Switzerland. A convenience sample of 20 adult patients admitted to the ED with dyspnea as the chief complaint and a high probability of inpatient admission was selected. A study physician followed the patients admitted to the ED throughout the hospitalization without interfering with the routine clinical work. Routinely collected health-related personal data from these patients were entered into the DDSS prototype. The DDSS prototype's resulting disease probability list was compared with the gold-standard main diagnosis provided by the treating physician.
Results: The DDSS presented information with high clarity and had a user-friendly, novel, and transparent interface. The DDSS prototype was not perfectly suited for the ED as case entry was time-consuming (1.5-2 hours per case). It provided accurate decision support in the clinical inpatient setting (average of cases in which the correct diagnosis was the first diagnosis listed: 6/20, 30%, SD 2.10%; average of cases in which the correct diagnosis was listed as one of the top 3: 11/20, 55%, SD 2.39%; average of cases in which the correct diagnosis was listed as one of the top 5: 14/20, 70%, SD 2.26%) in patients with dyspnea as the main presenting complaint.
Conclusions: The study of the feasibility and functionality of the tool was successful, with some limitations. Used in the right place, the DDSS has the potential to support physicians in their decision-making process by showing new pathways and unintentionally ignored diagnoses. The DDSS prototype had some limitations regarding the process of data input, diagnostic accuracy, and completeness of the integrated medical knowledge. The results of this study provide a basis for the tool's further development. In addition, future studies should be conducted with the aim to overcome the current limitations of the tool and study design.
Trial Registration: ClinicalTrials.gov NCT04827342; https://clinicaltrials.gov/ct2/show/NCT04827342.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990366 | PMC |
http://dx.doi.org/10.2196/29943 | DOI Listing |
ACS Appl Bio Mater
October 2023
Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
Lipid droplets (LDs) are dynamic complex organelles involved in various physiological processes, and their number and activity are linked to multiple diseases, including cancer. In this study, we have developed LD-specific near-infrared (NIR) light-responsive nano-drug delivery systems (DDSs) based on chalcone derivatives for cancer treatment. The reported nano-DDSs localized inside the cancer microenvironment of LDs, and upon exposure to light, they delivered the anticancer drug valproic acid in a spatiotemporally controlled manner.
View Article and Find Full Text PDFPharmaceutics
February 2023
Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy.
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content.
View Article and Find Full Text PDFPharmaceutics
December 2022
Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milano, Italy.
Retentive drug delivery systems (DDSs) are intended for prolonged residence and release inside hollow muscular organs, to achieve either local or systemic therapeutic goals. Recently, formulations based on shape memory polymers (SMPs) have gained attention in view of their special ability to recover a shape with greater spatial encumbrance at the target organ (e.g.
View Article and Find Full Text PDFJMIR Form Res
March 2022
CMIO Research Group, Digitalization & ICT Department, University Hospital Basel, Basel, Switzerland.
Background: Continuously growing medical knowledge and the increasing amount of data make it difficult for medical professionals to keep track of all new information and to place it in the context of existing information. A variety of digital technologies and artificial intelligence-based methods are currently available as persuasive tools to empower physicians in clinical decision-making and improve health care quality. A novel diagnostic decision support system (DDSS) prototype developed by Ada Health GmbH with a focus on traceability, transparency, and usability will be examined more closely in this study.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2021
Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25133, Brescia, Italy; Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit of Brescia, Via Branze 38, 25133, Brescia, Italy. Electronic address:
The present paper aims at developing an integrated experimental/computational approach towards the design of shape memory devices fabricated by hot-processing with potential for use as gastroretentive drug delivery systems (DDSs) and for personalized therapy if 4D printing is involved. The approach was tested on a plasticized poly(vinyl alcohol) (PVA) of pharmaceutical grade, with a glass transition temperature close to that of the human body (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!