A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Graphene quantum dots mediated magnetic chitosan drug delivery nanosystems for targeting synergistic photothermal-chemotherapy of hepatocellular carcinoma. | LitMetric

Graphene quantum dots mediated magnetic chitosan drug delivery nanosystems for targeting synergistic photothermal-chemotherapy of hepatocellular carcinoma.

Cancer Biol Ther

Clinical laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China.

Published: December 2022

Conventional clinical monotherapies for advanced hepatocellular carcinoma (HCC) have numerous limitations. Integrated oncology approaches can improve cancer treatment efficacy, and photothermal-chemotherapy drug delivery nanosystems (DDS) based on nanotechnology and biotechnology have piqued the interest of researchers. This study developed an aptamer-modified graphene quantum dots (GQDs)/magnetic chitosan DDS for photothermal-chemotherapy of HCC. The HCC aptamer and the EPR effect of nanoparticles, in particular, enable active and passive targeting of DDS to HCC. GQDs functioned as photosensitizers, effectively moderating photothermal therapy and inhibiting drug release during blood circulation. Magnetic chitosan demonstrated excellent drug encapsulation, acid sensitivity, and tumor imaging capabilities. Proper assembly of the units mentioned above enables precise combined therapy of HCC. This study indicates that DDS can significantly inhibit tumor growth while also extending the survival duration of tumor-bearing mice. The DDS (DOX-FeO@CGA) shows strong synergistic tumor treatment potential, allowing for the exploration and development of novel HCC therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959518PMC
http://dx.doi.org/10.1080/15384047.2022.2054249DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
magnetic chitosan
8
drug delivery
8
delivery nanosystems
8
hepatocellular carcinoma
8
hcc
6
dds
5
dots mediated
4
mediated magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!