The genus encompasses a diverse group of obligate intracellular bacteria that are highly virulent disease agents of mankind as well as symbionts of arthropods. Native plasmids of Rickettsia amblyommatis (AaR/SC) have been used as models to construct shuttle vectors for genetic manipulation of several species. Here, we report on the isolation of the complete plasmid (pRM658B) from Rickettsia monacensis IrR/Munich mutant Rmona658B and the construction of shuttle vectors based on pRM. To identify regions essential for replication, we made vectors containing the and genes of pRM with various portions of the region surrounding these genes and a selection reporter cassette conferring resistance to spectinomycin and expression of green fluorescent protein. Rickettsia amblyommatis (AaR/SC), (IrR/Munich), Rickettsia bellii (RML 369-C), Rickettsia parkeri (Tate's Hell), and Rickettsia montanensis (M5/6) were successfully transformed with shuttle vectors containing pRM and . PCR assays targeting pRM regions not included in the vectors revealed that native pRM was retained in transformants. Determination of native pRM copy number using a plasmid-carried gene (RM_p5) in comparison to chromosomally carried indicated reduced copy numbers in transformants. In transformed strains, native pRM and shuttle vectors with homologous and formed native plasmid-shuttle vector complexes. These studies provide insight on the maintenance of plasmids and shuttle vectors in rickettsiae. spp. are found in a diverse array of organisms, from ticks, mites, and fleas to leeches and insects. Many are not pathogenic, but others, such as Rickettsia rickettsii and Rickettsia prowazeckii, can cause severe illness or death. Plasmids are found in a large percentage of nonpathogenic rickettsiae, but not in species that cause severe disease. Studying these plasmids can reveal their role in the biology of these bacteria, as well as the molecular mechanism whereby they are maintained and replicate in rickettsiae. Here, we describe a new series of shuttle plasmids for the transformation of rickettsiae based on and sequences of plasmid pRM from Rickettsia monacensis. These shuttle vectors support transformation of diverse rickettsiae, including the native host of pRM, and are useful for investigating genetic determinants that govern rickettsial virulence or their ability to function as symbionts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004397 | PMC |
http://dx.doi.org/10.1128/aem.00210-22 | DOI Listing |
Cell Stem Cell
January 2025
Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Madrid, Spain; Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain. Electronic address:
Diamond-Blackfan anemia syndrome is a ribosomopathy classified among the bone marrow failure syndromes. This disease exhibits significant heterogeneity, with up to 24 genetic variants identified to date. Voit et al.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.
Background: Sporadic Alzheimer's Disease (sAD) is the most prevalent progressive neurodegenerative disease worldwide, without a cure. We propose to investigate therapies that contribute to the current state of this problem using a model of sAD in rats based on a single intracerebroventricular (icv) injection of streptozotocin (STZ). In this sense, thymulin (originally known as serum thymic factor, FTS), a thymic peptide, emerges as a potential therapeutic agent due to its proven anti-inflammatory effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Emerging evidence support the notion that loss of splicing repression by TDP-43, an RNA binding protein that was first implicated in ALS-FTD, underlies their pathogenesis. Previously, we showed that delivery of an AAV9 vector at early postnatal day expressing a fusion protein, termed CTR comprised of the N-terminal region of TDP-43 and an unrelated splicing repressor termed RAVER1 complemented the loss of TDP-43 in mice lacking TDP-43 in spinal motor neurons (ChAT-IRES-Cre;tardbp mice). To translate this potential therapeutic strategy to the clinic, it will be important to demonstrate benefit of such AAV delivery of CTR to motor neurons in adult mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
AviadoBio, London, London, United Kingdom.
Background: Frontotemporal dementia (FTD) presents with a change in personality, behaviour and language and is the second most common cause of young-onset dementia after Alzheimer's disease. Loss of function mutations in GRN, encoding progranulin (PGRN), causes FTD in the heterozygous state, accounting for 5-10% of all FTD cases. PGRN is essential for normal lysosomal function and neuronal survival.
View Article and Find Full Text PDFSci Rep
January 2025
Sarepta Therapeutics, Inc., Cambridge, MA, USA.
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!