An aplyronine A-swinholide A hybrid, consisting of the macrolactone part of aplyronine A and the side chain part of swinholide A, was designed, synthesized, and biologically evaluated. This hybrid induced protein-protein interactions between two major cytoskeletal proteins actin and tubulin in the same manner as aplyronine A, and exhibited potent cytotoxicity and actin-depolymerizing activity. The importance of the methoxy group in the ,,-trimethylserine ester was clarified by the structure-activity relationship studies of the amino acid moiety by using the hybrid analogs. Furthermore, the comparison of the actin-depolymerizing activities between the side chain analogs of aplyronine A and swinholide A showed that the side chain analog of swinholide A had much weaker actin-depolymerizing activity than that of aplyronine A.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ob00118gDOI Listing

Publication Analysis

Top Keywords

side chain
12
structure-activity relationship
8
relationship studies
8
aplyronine a-swinholide
8
a-swinholide hybrid
8
actin-depolymerizing activity
8
aplyronine
6
studies antitumor
4
antitumor marine
4
marine macrolide
4

Similar Publications

Fine-tuning probes for fluorescence polarization binding assays of bivalent ligands against polo-like kinase 1 using full-length protein.

Bioorg Med Chem

December 2024

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.

Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function.

View Article and Find Full Text PDF

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.

View Article and Find Full Text PDF

This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.

View Article and Find Full Text PDF

T cell receptor (TCR) mimics offer a promising platform for tumor-specific targeting of peptide-MHC in cancer immunotherapy. Here, we designed a α-helical TCR mimic (TCRm) specific for the NY-ESO-1 peptide presented by HLA-A 02, achieving high on-target specificity with nanomolar affinity (K = 9.5 nM).

View Article and Find Full Text PDF

Impact of pre-crosslinks on the self-transformation performance of thermoplastic polyesters into vitrimers intermolecular transesterification.

RSC Adv

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi Japan 466-8555

We recently proposed a concept of self-transformation from thermoplastic polyesters into vitrimers intermolecular bond exchange as the cross-linking reaction. Key was the use of polyesters bearing hydroxyl side groups, which were cross-linked without additional cross-linkers through intermolecular transesterification in the presence of a suitable catalyst. In our previous study, a linear polyester was synthesized as the starting polymer by reacting dithiol monomers containing ester bonds (2-SH) with diepoxy monomers (2-epoxy) a thiol-epoxy reaction, generating hydroxyl side groups along the polyester chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!