Background Myocardial dysfunction is the leading cause of early death following successful cardiopulmonary resuscitation (CPR) in people with cardiac arrest (CA), which is potentially driven by cell pyroptosis mediated by NOD-like receptor pyrin domain 3 (NLRP3) inflammasome. Recently, histone deacetylase 6 (HDAC6) inhibition was shown to exert effective myocardial protection against regional ischemia/reperfusion injury. In this study, we investigated whether tubastatin A, a specific histone deacetylase 6 inhibitor, could improve postresuscitation myocardial dysfunction through the inhibition of NLRP3-mediated cell pyroptosis and its modulation mechanism. Methods and Results Healthy male white domestic swine were used to establish the model of CA/CPR in vivo, and the H9c2 cardiomyocyte hypoxia/reoxygenation model was used to simulate the CA/CPR process in vitro. Consequently, tubastatin A inhibited NLRP3 inflammasome activation, decreased proinflammatory cytokines production and cell pyroptosis, and increased cell survival after hypoxia/reoxygenation in H9c2 cardiomyocytes in vitro. In addition, tubastatin A increased the acetylated levels of transcription factor EB and its translocation to the nucleus, and its protective effect above was partly abrogated by transcription factor EB short interfering RNA after hypoxia/reoxygenation in H9c2 cardiomyocytes. Similarly, tubastatin A promoted cardiac transcription factor EB nuclear translocation, inhibited NLRP3-mediated cell pyroptosis, and mitigated myocardial dysfunction after CA/CPR in swine. Conclusions The inhibition of histone deacetylase 6 activity by tubastatin A limited NLRP3 inflammasome activation and cell pyroptosis probably through the enhancement of transcription factor EB signaling, and therefore improved myocardial dysfunction after CA/CPR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075499PMC
http://dx.doi.org/10.1161/JAHA.121.024205DOI Listing

Publication Analysis

Top Keywords

myocardial dysfunction
20
transcription factor
20
cell pyroptosis
20
nlrp3 inflammasome
12
histone deacetylase
12
factor signaling
8
nlrp3-mediated cell
8
inflammasome activation
8
hypoxia/reoxygenation h9c2
8
h9c2 cardiomyocytes
8

Similar Publications

To investigate the correlation between fetoplacental circulation and maternal left ventricular myocardial work (MW) parameters in patients with preeclampsia (PE) and the prediction of fetal hypoxia. Seventy-eight PE patients (PE group) were assigned to intrauterine-hypoxia (27) and non-intrauterine-hypoxia (51) groups, and 45 healthy pregnant women were controls. The receiver operating characteristic (ROC) curve evaluated the diagnostic efficacy of each parameter for fetal intrauterine hypoxia.

View Article and Find Full Text PDF

Background: Stress hyperglycaemia ratio (SHR) has been reported to be independently and significantly associated with various adverse cardiovascular events as well as mortality. Moreover, in-hospital heart failure following acute myocardial infarction has been demonstrated to account for majority of all heart failure (HF) cases with anterior myocardial infarction showing higher rates of HF. However, the association between SHR and in-hospital HF following an anterior ST-elevation myocardial infarction (STEMI) has not been reported earlier.

View Article and Find Full Text PDF

Previous studies demonstrated that dexmedetomidine (Dex) posttreatment aggravated myocardial dysfunction and reduced survival in septic mice. Yet, whether Dex elicits similar effects in septic patients as defined by Sepsis-3 remains unknown. This study sought to assess the effects of Dex-based sedation on mortality and cardiac dysfunction in septic patients defined by Sepsis-3 and to further reveal the mechanisms in septic rats.

View Article and Find Full Text PDF

HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis.

Dev Cell

December 2024

Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150080, China. Electronic address:

Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages.

View Article and Find Full Text PDF

Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis.

Free Radic Res

December 2024

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!