A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ChGn-2 Plays a Cardioprotective Role in Heart Failure Caused by Acute Pressure Overload. | LitMetric

Background Cardiac extracellular matrix is critically involved in cardiac homeostasis, and accumulation of chondroitin sulfate glycosaminoglycans (CS-GAGs) was previously shown to exacerbate heart failure by augmenting inflammation and fibrosis at the chronic phase. However, the mechanism by which CS-GAGs affect cardiac functions remains unclear, especially at the acute phase. Methods and Results We explored a role of CS-GAG in heart failure using mice with target deletion of ChGn-2 (chondroitin sulfate N-acetylgalactosaminyltransferase-2) that elongates CS chains of glycosaminoglycans. Heart failure was induced by transverse aortic constriction in mice. The role of CS-GAG derived from cardiac fibroblasts in cardiomyocyte death was analyzed. Cardiac fibroblasts were subjected to cyclic mechanical stretch that mimics increased workload in the heart. Significant CS-GAGs accumulation was detected in the heart of wild-type mice after transverse aortic constriction, which was substantially reduced in ChGn-2 mice. Loss of ChGn-2 deteriorated the cardiac dysfunction caused by pressure overload, accompanied by augmented cardiac hypertrophy and increased cardiomyocyte apoptosis. Cyclic mechanical stretch increased ChGn-2 expression and enhanced glycosaminoglycan production in cardiac fibroblasts. Conditioned medium derived from the stretched cardiac fibroblasts showed cardioprotective effects, which was abolished by CS-GAGs degradation. We found that CS-GAGs elicits cardioprotective effects via dual pathway; direct pathway through interaction with CD44, and indirect pathway through binding to and activating insulin-like growth factor-1. Conclusions Our data revealed the cardioprotective effects of CS-GAGs; therefore, CS-GAGs may play biphasic role in the development of heart failure; cardioprotective role at acute phase despite its possible unfavorable role in the advanced phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075488PMC
http://dx.doi.org/10.1161/JAHA.121.023401DOI Listing

Publication Analysis

Top Keywords

heart failure
20
cardiac fibroblasts
16
cardioprotective effects
12
cardiac
9
cardioprotective role
8
pressure overload
8
chondroitin sulfate
8
acute phase
8
role cs-gag
8
transverse aortic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!