The efficient delivery of CRISPR-Cas components is still a key and unsolved problem. CRISPR-Cas delivery in the form of a Cas protein+sgRNA (ribonucleoprotein complex, RNP complex), has proven to be extremely effective, since it allows to increase on-target activity, while reducing nonspecific activity. The key point for in vivo genome editing is the direct delivery of artificial nucleases and donor DNA molecules into the somatic cells of an adult organism. At the same time, control of the dose of artificial nucleases is impossible, which affects the efficiency of genome editing in the affected cells. Poor delivery efficiency and low editing efficacy reduce the overall potency of the in vivo genome editing process. Here we review how this problem is currently being solved in scientific works and what types of in vivo delivery methods of Cas9/sgRNA RNPs have been developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-022-00479-z | DOI Listing |
Sci Transl Med
January 2025
College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.
View Article and Find Full Text PDFPlant Physiol
January 2025
Rothamsted Research, West Common, Harpenden, Al5 2JQ, UK.
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.
View Article and Find Full Text PDFAnat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA.
Cartilage injuries are extremely common in the general population, and conventional interventions have failed to produce optimal results. Tissue engineering (TE) technology has been developed to produce neocartilage for use in a variety of cartilage-related conditions. However, progress in the field of cartilage TE has historically been difficult due to the high functional demand and avascular nature of the tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!