Permafrost thaw can accelerate climate warming by releasing carbon from previously frozen soil in the form of greenhouse gases. Rainfall extremes have been proposed to increase permafrost thaw, but the magnitude and duration of this effect are poorly understood. Here we present empirical evidence showing that one extremely wet summer (+100 mm; 120% increase relative to average June-August rainfall) enhanced thaw depth by up to 35% in a controlled irrigation experiment in an ice-rich Siberian tundra site. The effect persisted over two subsequent summers, demonstrating a carry-over effect of extremely wet summers. Using soil thermal hydrological modelling, we show that rainfall extremes delayed autumn freeze-up and rainfall-induced increases in thaw were most pronounced for warm summers with mid-summer precipitation rainfall extremes. Our results suggest that, with rainfall and temperature both increasing in the Arctic, permafrost will likely degrade and disappear faster than is currently anticipated based on rising air temperatures alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943195PMC
http://dx.doi.org/10.1038/s41467-022-29248-xDOI Listing

Publication Analysis

Top Keywords

extremely wet
12
permafrost thaw
12
rainfall extremes
12
wet summer
8
siberian tundra
8
thaw
5
rainfall
5
summer events
4
events enhance
4
permafrost
4

Similar Publications

Halophilic proteins possess unique structural properties and show high stability under extreme conditions. This distinct characteristic makes them invaluable for application in various aspects such as bioenergy, pharmaceuticals, environmental clean-up, and energy production. Generally, halophilic proteins are discovered and characterized through labor-intensive and time-consuming wet lab experiments.

View Article and Find Full Text PDF

Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials.

ACS Sustain Resour Manag

December 2024

FSCN Research Center, Organic Chemistry, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.

There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.

View Article and Find Full Text PDF

Even at trace concentrations, micropollutants, including pesticides and pharmaceuticals, pose considerable ecological risks, and the increasing presence of synthetic chemical substances in aquatic systems has emerged as a growing concern. Moreover, limited machine-learning (ML) approaches exist for analyzing environmental data, and the increasing complexity of ML models has made it challenging to understand predictor-outcome relationships. In particular, understanding complex interactions among multiple variables remains challenging.

View Article and Find Full Text PDF

Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles.

ACS Appl Mater Interfaces

December 2024

Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal.

The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact.

View Article and Find Full Text PDF

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!