G-protein gamma subunit 2 (GNG2) is involved in several cell signaling pathways, and is essential for cell proliferation and angiogenesis. However, the role of GNG2 in tumorigenesis and development remains unclear. In this study, 1321 differentially expressed genes (DEGs) in breast cancer (BC) tissues were screened using the GEO and TCGA databases. KEGG enrichment analysis showed that most of the enriched genes were part of the PI3K-Akt signaling pathway. We identified GNG2 from the first five DEGs, its expression was markedly reduced in all BC subtype tissues. Cox regression analysis showed that GNG2 was independently associated with overall survival in patients with luminal A and triple-negative breast cancers (TNBC). GNG2 over-expression could significantly block the cell cycle, inhibit proliferation, and promote apoptosis in BC cells in vitro. In animal studies, GNG2 over-expression inhibited the growth of BC cells. Further, we found that GNG2 significantly inhibited the activity of ERK and Akt in an MRAS-dependent manner. Importantly, GNG2 and muscle RAS oncogene homolog (MRAS) were co-localized in the cell membrane, and the fluorescence resonance energy transfer (FRET) experiment revealed that they had direct interaction. In conclusion, the interaction between GNG2 and MRAS likely inhibits Akt and ERK activity, promoting apoptosis and suppressing proliferation in BC cells. Increasing GNG2 expression or disrupting the GNG2-MRAS interaction in vivo could therefore be a potential therapeutic strategy to treat BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943035 | PMC |
http://dx.doi.org/10.1038/s41419-022-04690-3 | DOI Listing |
Sci Rep
January 2025
Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.
G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland.
Recently, steel girders with sinusoidal corrugations have become increasingly popular compared to those with traditional flat webs. This paper presents the second part of the research on the application of corrugated plates with different sinusoidal profiles as webs in girders. Parametric studies have been carried out in both linear and nonlinear domains, based on a representative numerical model developed and validated by experimental results.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
Biochem Genet
October 2024
Department of Cardiology, The First People's Hospital of Zhaoqing City, No.9 Donggang East Road, Zhaoqing, 526040, Guangdong, China.
Mounting evidence indicates that myocardial fibrosis (MF) is frequently intertwined with immune and metabolic disorders. This comprehensive review aims to delve deeply into the crucial role of immune-related signature genes in the pathogenesis and progression of MF. This exploration holds significant importance as understanding the underlying mechanisms of MF is essential for developing effective diagnostic and therapeutic strategies.
View Article and Find Full Text PDFAnimal
June 2024
School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China. Electronic address:
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!