Macrocycle-Based Solid-State Supramolecular Polymers.

Acc Chem Res

State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Published: April 2022

Supramolecular polymers, generated by connecting monomers through noncovalent interactions, have received considerable attention over the past years, as they provide versatile platforms for developing diverse aesthetically pleasing polymeric structures with promising applications in a variety of fields, such as medicine, catalysis, and sensing. In the development of supramolecular polymers, macrocyclic hosts play a very important role. Benefiting from their abundant host-guest chemistry and self-assembly characteristics, macrocycles themselves or their host-guest complexes can self-assemble to form well-ordered supramolecular polymeric architectures including pseudopolyrotaxanes and polyrotaxanes. The integration of these topological structures into supramolecular polymeric materials also imbues them with some unforeseen functions. Current interest in macrocycle-based supramolecular polymers is mostly focused on the development of supramolecular soft materials in solution or gel-state, in which the dynamic nature of noncovalent interactions endows supramolecular polymers with a wealth of "smart" properties, such as multiresponsiveness and self-repair capabilities. While preparation of macrocycle-derived supramolecular polymers in the solid state is a relatively challenging but intriguing prospect, they are an important part of the field of supramolecular polymers. On one hand, the construction of macrocycle-based solid-state supramolecular polymers enables us to obtain new materials with novel properties and functions such as mechano-responsiveness. On the other hand, the molecular structures and arrangements in these materials are well-identified by X-ray crystallography techniques, offering a direct visual representation of the supramolecular polymerization process. The analysis of the role of noncovalent interactions in these architectures allows us to design more sophisticated and elegant supramolecular polymers in a highly rationalized and controllable manner. This Account serves to summarize the research progress on macrocycle-based solid-state supramolecular polymers (MSSPs), including the contributions toward this field made by our group. For constructing MSSPs, the key point is to control noncovalent interactions. Thus, in this Account, we primarily classify these MSSPs by different noncovalent interactions involved to connect the monomers, including metal-ligand interactions, host-guest interactions, π···π stacking, and halogen bonding. These noncovalent interactions are highly associated with the structures and functions of the resultant MSSPs. For instance, using metal-ligand interactions as driving forces, metal clusters can be introduced in MSSPs which afford systems with solid-state luminescence or proton conduction properties; supramolecular polymerization using macrocycle-based host-guest interactions can modulate the molecular arrangement of some specific molecules in the solid state, which further influences their solid-state properties; π···π stacking interactions and halogen bonding give chemists more choice to design MSSPs with various elements. The role of macrocyclic hosts in MSSPs is also revealed in these descriptions. Finally, the remaining challenges are identified for further development of future prospects. We hope that this Account can inspire new discoveries in the realm of supramolecular functional systems and offer new opportunities for the construction of supramolecular architectures and solid-state materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.2c00011DOI Listing

Publication Analysis

Top Keywords

supramolecular polymers
40
noncovalent interactions
24
supramolecular
17
macrocycle-based solid-state
12
solid-state supramolecular
12
interactions
11
polymers
10
development supramolecular
8
macrocyclic hosts
8
supramolecular polymeric
8

Similar Publications

Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

In this present study, we developed and characterized a series of supramolecular G4 hydrogels by integrating -cyclodextrin (-CD) and boronic acid linkers into a supramolecular matrix to enhance antibacterial activity against (). We systematically investigated how varying the number of free boronic acid moieties (ranging from two to six), along with guanosine and β-CD content, influences both the structural integrity and antimicrobial efficacy of these materials. Comprehensive characterization using FTIR, circular dichroism, X-ray diffraction, SEM, AFM, and rheological measurements confirmed successful synthesis and revealed that higher boronic acid content correlated with a stronger, more organized network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!