Biotemplate Fabrication of Hollow Tubular CeSrTiO with Regulable Surface Acidity and Oxygen Mobility for Efficient Destruction of Chlorobenzene: Intrinsic Synergy Effect and Reaction Mechanism.

Environ Sci Technol

State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.

Published: May 2022

Developing economic and applicable catalysts with elegant chlorine resistance and organic byproduct inhibition capability is of great significance for chlorinated volatile organic compounds (Cl-VOCs) eco-friendly purification. Here, ternary CeSrTiO catalysts with tunable surface acidity and oxygen species mobility were creatively fabricated using the hollow tubular-structured fruit hair of Platanus (FHP; a widespread greenery waste) as the scaffolding biotemplate. It is shown that the oxygen vacancy (O) triggered by the presence of Ce can optimize the synergy between the Lewis acid sites (LAS) and Brønsted acid sites (BAS). High concentration of O and BAS promotes the C-Cl cleavage of chlorobenzene (CB) and accelerates the desorption of Cl radicals as inorganic chlorine. Simultaneously, the strong electron transfer within Ti-Ce-Sr linkage increases the acidity of LAS, resulting in the superior reducibility of CeSrTiO and facilitating the deep oxidation of dechlorination intermediates. Additionally, the spatial confinement of the tubular structure remarkably accelerates the CB flow rate and reduces the residence time of byproducts over the prepared catalysts. Owing to these, CB can be efficiently destructed over CeSrTiO with selectivity of CO and inorganic chlorine dramatically enhanced, respectively, approximately 16 and 21 times at 275 °C compared to those of pure SrTiO. The present work provides a feasible and promising strategy for engineering efficient catalysts for heterogeneous thermocatalytic reactions for industrial-scale Cl-CVOC destruction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c00270DOI Listing

Publication Analysis

Top Keywords

surface acidity
8
acidity oxygen
8
acid sites
8
inorganic chlorine
8
biotemplate fabrication
4
fabrication hollow
4
hollow tubular
4
cesrtio
4
tubular cesrtio
4
cesrtio regulable
4

Similar Publications

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Emerging biosensing platforms based on metal-organic frameworks (MOFs) for detection of exosomes as diagnostic cancer biomarkers: case study for the role of the MOFs.

J Mater Chem B

January 2025

Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.

View Article and Find Full Text PDF

The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.

View Article and Find Full Text PDF

Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery.

Nanoscale

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.

Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs . This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body.

View Article and Find Full Text PDF

Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!