Applicability of water from the Bay of Gdańsk as a growth medium for mixotrophic culture of .

Front Biosci (Elite Ed)

Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland.

Published: February 2022

is a potentially promising species with commercial, environmental and technological viability for industrial applications. The great potential of these microalgae lies in their fast biomass growth, pollution resistance, and compatibility with different culture media. This study aimed to determine the efficiency of biomass production in a medium prepared with water from the Bay of Gdańsk. The tested medium supported high biomass growth rates which reached 317.58 ± 42.31 mgV⁢S/dm3⋅d in the best-performing variant, with a final concentration of 3493.3 ± 465.4 mgV⁢S/dm3⋅d. In the autotrophic culture, nitrogen and phosphorus removal exceeded 98%. Amending the mixotrophic culture with glucose did not affect concentrations. However, it did significantly limit the demand for nutrients in the biomass and reduced chlorophyll a production in the cells.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbe1401005DOI Listing

Publication Analysis

Top Keywords

water bay
8
bay gdańsk
8
mixotrophic culture
8
biomass growth
8
applicability water
4
gdańsk growth
4
growth medium
4
medium mixotrophic
4
culture
4
culture promising
4

Similar Publications

The study of land cover dynamics and the valuation of ecosystem services in coastal cities is pivotal for guiding sustainable urban development and conserving natural resources amidst the unique challenges posed by their geographical and ecological contexts. This study utilizes a 30 m × 30 m land use/cover change (LUCC) dataset to elucidate the spatiotemporal evolution of LUCC and ecosystem service value (ESV) and the trade-offs and synergistic relationships among ecosystem services in the coastal city of Qingdao under three different scenarios over the past 35 years and in the future based on the dual perspective of the past-future by using the equivalent factor approach (EFA), the PLUS model, and Spearman's rank correlation coefficient. The findings reveal a pronounced expansion in built-up areas in Qingdao from 1985 to 2020, with a concomitant significant reduction in cropland, leading to a fluctuation in the total ESV, which initially increased and then declined.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

The protonolysis and redox reactivity of a Ce(IV) carbonate complex supported by the Kläui tripodal ligand [(η-CH)Co{P(O)(OEt)}] (L) have been studied. Whereas treatment of [Ce(L)(CO)] () with RCOH afforded [Ce(L)(RCO)] ( = Me (), Ph (), 2-NOCH ()), the reaction of with PhCHCOH resulted in formation of a mixture of Ce(IV) () and Ce(III) () carboxylate species. In benzene in the dark, was slowly converted into via Ce(IV)-O(carboxylate) homolysis.

View Article and Find Full Text PDF

Manganese Peroxidase Participates in the Liquid-Solid-Gas Triphase Regulation on Microbial Degradation of Lignocellulose in Solid-State Fermentation.

Biotechnol Bioeng

January 2025

Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.

The three-phase structure of solid-state fermentation (SSF) directly affects substrate degradation and fermentation efficiency. However, the mechanism of three-phase regulation on lignocellulose utilization and microbial metabolism is still unclear. Based on comparative transcriptome analysis, a lignocellulose degrading enzyme, manganese peroxidase (GlMnP), which was significantly affected by water stress meanwhile related to triphase utilization, was screened to reveal the mechanism using Ganoderma lucidum as the reference strain.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!