The Capsule of Acinetobacter baumannii Protects against the Innate Immune Response.

J Innate Immun

Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA.

Published: September 2022

AI Article Synopsis

  • Acinetobacter baumannii is a significant opportunistic pathogen linked to high mortality and strong antibiotic resistance.
  • The study highlights that A. baumannii can trigger a type I interferon response through specific immune signaling pathways, particularly when its capsule is reduced.
  • The findings suggest that a lack of capsule enhances immune cell phagocytosis and cytokine production, indicating that the bacterium's capsule plays a key role in evading the host immune response.

Article Abstract

Acinetobacter baumannii is an opportunistic pathogen that has recently emerged as a global threat associated with high morbidity, mortality, and antibiotic resistance. We determined the role of type I interferon (IFN) signaling in A. baumannii infection. We report that A. baumannii can induce a type I IFN response that is dependent upon TLR4-TRIF-IRF3 and phagocytosis of the bacterium. Phase variants of A. baumannii that have a reduced capsule, lead to enhanced TLR4-dependent type I IFN induction. This was also observed in a capsule-deficient strain. However, we did not observe a role for this pathway in vivo. The enhanced signaling could be accounted for by increased phagocytosis in capsule-deficient strains that also lead to enhanced host cell-mediated killing. The increased cytokine response in the absence of the capsule was not exclusive to type I IFN signaling. Several cytokines, including the proinflammatory IL-6, were increased in cells stimulated with the capsule-deficient strain, also observed in vivo. After 4 h in our acute pneumonia model, the burden of a capsule-null strain was significantly reduced, yet we observed increases in innate immune cells and inflammatory markers compared to wild-type A. baumannii. This study underscores the role of phase variation in the modulation of host immune responses and indicates that the capsule of A. baumannii plays an important role in protection against host cell killing and evasion from activation of the innate immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485954PMC
http://dx.doi.org/10.1159/000522232DOI Listing

Publication Analysis

Top Keywords

innate immune
12
type ifn
12
acinetobacter baumannii
8
immune response
8
ifn signaling
8
lead enhanced
8
capsule-deficient strain
8
baumannii
7
capsule
4
capsule acinetobacter
4

Similar Publications

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing.

PLoS Pathog

January 2025

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.

Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Vitiligo is a pigmentary disorder acquired and caused by the loss or destruction of melanocytes from the epidermis. There is strong proof that vitiligo is mainly an autoimmune disease. Cathelicidin (LL37), an antimicrobial polypeptide, is an important part of the innate immune system and has a role in different skin autoimmune diseases.

View Article and Find Full Text PDF

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!