A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-attentional microvessel segmentation via squeeze-excitation transformer Unet. | LitMetric

Self-attentional microvessel segmentation via squeeze-excitation transformer Unet.

Comput Med Imaging Graph

Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Published: April 2022

Automatic vessel segmentation is a key step of clinical or pre-clinical vessel bio-markers for clinical diagnosis. In previous research, the segmentation architectures are mainly based on Convolutional Neural Networks (CNN). However, due to the limitation of the receipt of field (ROF) of convolution operation, it is difficult to further improve the accuracy of the CNN-based methods. To solve this problem, a Squeeze-Excitation Transformer U-net (SETUnet) is proposed to break the ROF limitation of CNN. The proposed squeeze-excitation Transformer can introduce the self attention mechanism into the vessel segmentation task by generating a global attention mapping according to the entire vessel image. To test the performance of the proposed SETUnet, the SETUnet is trained and tested on several public vessel data-sets. The results show that the SETUnet outperforms several state-of-the-art vessel segmentation neural networks, especially on the connectivity of the segmented vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2022.102055DOI Listing

Publication Analysis

Top Keywords

squeeze-excitation transformer
12
vessel segmentation
12
neural networks
8
vessel
6
segmentation
5
self-attentional microvessel
4
microvessel segmentation
4
segmentation squeeze-excitation
4
transformer unet
4
unet automatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!