Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All-solid-state (ASS) Na-S batteries are promising for a large-scale energy-storage system owing to numerous merits. However, the high conversion reaction barrier impedes their practical application. In this work, the basic mechanism on how Se catalyzes the conversion reaction in the Na-S batteries is unraveled. The sodiation/desodiation of Na-SeS nanobatteries are systematically evaluated via in situ transmission electron microscopy (in situ TEM) with a microheating device. The real-time analyses reveal an amorphous Na-Se S intermediate phase appears during the direct conversion from SeS to Na S, and a reverse reaction succeeds at 100 °C with a prior formation of Se. The absence of polysulfides and a much lower desodiation temperature in contrast to Na-S nanobatteries demonstrate that the Se incorporation significantly lowers the conversion reaction barrier. According to these findings, the ASS SeS batteries using a Na SbS solid electrolyte (SE) are assembled using various SE:C ratios in the composite cathodes to investigate the effect of the ion and electron transport on the electrochemical properties, including the effective transport properties, MacMullin number, and the tortuosity factor. The obtained results in turn confirm the findings from the in situ TEM. These findings are applicable to optimize other S-based active materials and improve their utilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9109063 | PMC |
http://dx.doi.org/10.1002/advs.202200744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!