Objectives: We developed a natural polyphenol supplement that strongly chelates iron in vitro and assessed its effect on non-heme iron absorption in patients with hereditary hemochromatosis (HH).
Methods: We performed in vitro iron digestion experiments to determine iron precipitation by 12 polyphenol-rich dietary sources, and formulated a polyphenol supplement (PPS) containing black tea powder, cocoa powder and grape juice extract. In a multi-center, single-blind, placebo-controlled cross-over study, we assessed the effect of the PPS on iron absorption from an extrinsically labelled test meal and test drink in patients (n = 14) with HH homozygous for the p.C282Y variant in the HFE gene. We measured fractional iron absorption (FIA) as stable iron isotope incorporation into erythrocytes.
Results: Black tea powder, cocoa powder and grape juice extract most effectively precipitated iron in vitro. A PPS mixture of these three extracts precipitated ~ 80% of iron when 2 g was added to a 500 g iron solution containing 20 µg Fe/g. In the iron absorption study, the PPS reduced FIA by ~ 40%: FIA from the meal consumed with the PPS was lower (3.01% (1.60, 5.64)) than with placebo (5.21% (3.92, 6.92)) (p = 0.026)), and FIA from the test drink with the PPS was lower (10.3% (7.29 14.6)) than with placebo (16.9% (12.8 22.2)) (p = 0.002).
Conclusion: Our results indicate that when taken with meals, this natural PPS can decrease dietary iron absorption, and might thereby reduce body iron accumulation and the frequency of phlebotomy in patients with HH.
Trial Registry: clinicaltrials.gov (registration date: 9.6.2019, NCT03990181).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363374 | PMC |
http://dx.doi.org/10.1007/s00394-022-02829-8 | DOI Listing |
J Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India.
Improving the electronic properties of active cathode materials can significantly impact the design of rechargeable batteries. In this study, we investigated the influence of micro-strain on the structural and electronic properties of LiFePO (LFP) by performing combined core-level spectroscopy analysis and electrical conductivity measurements. High-resolution X-ray diffraction measurements, followed by Rietveld refinement analysis, revealed an increase in unit cell parameters due to the enhanced micro-strain in the lattice structure.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India. Electronic address:
Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g DW), medium- (31-70 ng g DW) or high- (>71 ng g DW).
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
Iron deficiency anemia (IDA) is a prevalent nutritional deficiency problem. This study aimed to investigate the characteristics of Choerospondias axillaris polysaccharide-Fe (III) complex and its effect on IDA mice. CAP-Fe (III) complex was synthesized by co-thermal synthesis method with an iron content of 27.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!